Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\textbf {R}^ n$. II
HTML articles powered by AMS MathViewer
- by Kevin McLeod
- Trans. Amer. Math. Soc. 339 (1993), 495-505
- DOI: https://doi.org/10.1090/S0002-9947-1993-1201323-X
- PDF | Request permission
Abstract:
We prove a uniqueness result for the positive solution of $\Delta u + f(u) = 0$ in ${\mathbb {R}^n}$ which goes to $0$ at $\infty$. The result applies to a wide class of nonlinear functions $f$, including the important model case $f(u) = - u + {u^p}$ , $1 < p < (n + 2)/(n - 2)$. The result is proved by reducing to an initial-boundary problem for the ${\text {ODE}}\;u'' + (n - 1)/r + f(u) = 0$ and using a shooting method.References
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345. MR 695535, DOI 10.1007/BF00250555
- H. Berestycki, P.-L. Lions, and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $\textbf {R}^{N}$, Indiana Univ. Math. J. 30 (1981), no. 1, 141–157. MR 600039, DOI 10.1512/iumj.1981.30.30012
- Charles V. Coffman, Uniqueness of the ground state solution for $\Delta u-u+u^{3}=0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal. 46 (1972), 81–95. MR 333489, DOI 10.1007/BF00250684
- Xabier Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations 70 (1987), no. 1, 69–92. MR 904816, DOI 10.1016/0022-0396(87)90169-0
- Man Kam Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\textbf {R}^n$, Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. MR 969899, DOI 10.1007/BF00251502 —, Personal communication.
- Kevin McLeod and James Serrin, Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\textbf {R}^n$, Arch. Rational Mech. Anal. 99 (1987), no. 2, 115–145. MR 886933, DOI 10.1007/BF00275874
- Kevin McLeod, W. C. Troy, and F. B. Weissler, Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, J. Differential Equations 83 (1990), no. 2, 368–378. MR 1033193, DOI 10.1016/0022-0396(90)90063-U
- L. A. Peletier and James Serrin, Uniqueness of positive solutions of semilinear equations in $\textbf {R}^{n}$, Arch. Rational Mech. Anal. 81 (1983), no. 2, 181–197. MR 682268, DOI 10.1007/BF00250651 S. I. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. 5 (1965), 1408-1411.
- Li Qun Zhang, Uniqueness of positive solutions to semilinear elliptic equations, Acta Math. Sci. (Chinese) 11 (1991), no. 2, 130–142 (Chinese). MR 1129746
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 495-505
- MSC: Primary 35J60; Secondary 34B15, 35B05
- DOI: https://doi.org/10.1090/S0002-9947-1993-1201323-X
- MathSciNet review: 1201323