Sieved orthogonal polynomials. VII. Generalized polynomial mappings
HTML articles powered by AMS MathViewer
- by Jairo A. Charris and Mourad E. H. Ismail
- Trans. Amer. Math. Soc. 340 (1993), 71-93
- DOI: https://doi.org/10.1090/S0002-9947-1993-1038014-4
- PDF | Request permission
Abstract:
Systems of symmetric orthogonal polynomials whose recurrence relations are given by compatible blocks of second-order difference equations are studied in detail. Applications are given to the theory of the recently discovered sieved orthogonal polynomials. The connection with polynomial mappings is examined. An example of a family of orthogonal polynomials having discrete masses in the interior of the spectrum is included.References
- Waleed Al-Salam, W. R. Allaway, and Richard Askey, Sieved ultraspherical polynomials, Trans. Amer. Math. Soc. 284 (1984), no. 1, 39–55. MR 742411, DOI 10.1090/S0002-9947-1984-0742411-6 R. Aksey and M. E. H. Ismail, The Rogers $q$-ultraspherical polynomials, Approximation Theory III, Academic Press, 1980, pp. 223-278.
- R. Askey and Mourad E. H. Ismail, A generalization of ultraspherical polynomials, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 55–78. MR 820210
- Richard Askey and Mourad Ismail, Recurrence relations, continued fractions, and orthogonal polynomials, Mem. Amer. Math. Soc. 49 (1984), no. 300, iv+108. MR 743545, DOI 10.1090/memo/0300
- Richard Askey, Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum, SIAM J. Math. Anal. 5 (1974), 119–124. MR 385197, DOI 10.1137/0505013
- Richard Askey and James Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319, iv+55. MR 783216, DOI 10.1090/memo/0319
- Joaquin Bustoz and Mourad E. H. Ismail, The associated ultraspherical polynomials and their $q$-analogues, Canadian J. Math. 34 (1982), no. 3, 718–736. MR 663314, DOI 10.4153/CJM-1982-049-6
- Jairo Charris and Mourad E. H. Ismail, On sieved orthogonal polynomials. II. Random walk polynomials, Canad. J. Math. 38 (1986), no. 2, 397–415. MR 833576, DOI 10.4153/CJM-1986-020-x
- Jairo A. Charris and Mourad E. H. Ismail, On sieved orthogonal polynomials. V. Sieved Pollaczek polynomials, SIAM J. Math. Anal. 18 (1987), no. 4, 1177–1218. MR 892496, DOI 10.1137/0518086
- Jairo A. Charris and Guillermo RodrĂguez-Blanco, On systems of orthogonal polynomials with inner and end point masses, Rev. Colombiana Mat. 24 (1990), no. 3-4, 153–177 (Spanish). MR 1106603
- T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR 0481884
- J. S. Geronimo and W. Van Assche, Orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory 46 (1986), no. 3, 251–283. MR 840395, DOI 10.1016/0021-9045(86)90065-1
- J. S. Geronimo and W. Van Assche, Orthogonal polynomials on several intervals via a polynomial mapping, Trans. Amer. Math. Soc. 308 (1988), no. 2, 559–581. MR 951620, DOI 10.1090/S0002-9947-1988-0951620-6
- Mourad E. H. Ismail, On sieved orthogonal polynomials. I. Symmetric Pollaczek analogues, SIAM J. Math. Anal. 16 (1985), no. 5, 1093–1113. MR 800799, DOI 10.1137/0516081
- Jairo Charris and Mourad E. H. Ismail, On sieved orthogonal polynomials. II. Random walk polynomials, Canad. J. Math. 38 (1986), no. 2, 397–415. MR 833576, DOI 10.4153/CJM-1986-020-x
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0435697 L. J. Rogers, On the expansion of some infinite products, Proc. London Math. Soc. (3) 24 (1892), 337-352. —, Second memoir on the expansion of some infinite products, Proc. London Math. Soc. (3) 25 (1894), 318-342. —, Third memoir on the expansion of some infinite products, Proc. London Math. Soc. (3) 26 (1895), 15-32.
- H. A. Slim, On co-recursive orthogonal polynomials and their application to potential scattering, J. Math. Anal. Appl. 136 (1988), no. 1, 1–19. MR 972579, DOI 10.1016/0022-247X(88)90111-4 J. C. Wheeler, Modified moments and continued fraction coefficients for the diatomic linear chain, J. Chem. Phys. 80 (1984), 472-476.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 340 (1993), 71-93
- MSC: Primary 33C45
- DOI: https://doi.org/10.1090/S0002-9947-1993-1038014-4
- MathSciNet review: 1038014