Elementary duality of modules
HTML articles powered by AMS MathViewer
- by Ivo Herzog
- Trans. Amer. Math. Soc. 340 (1993), 37-69
- DOI: https://doi.org/10.1090/S0002-9947-1993-1091706-3
- PDF | Request permission
Abstract:
Let $R$ be a ring. A formula $\varphi ({\mathbf {x}})$ in the language of left $R$-modules is called a positive primitive formula (ppf) if it is of the form $\exists {\mathbf {y}}\left ({AB} \right )\left (\begin {array}{*{20}{c}}x\\y\\\end {array} \right ) = 0$ where $A$ and $B$ are matrices of appropriate size with entries in $R$. We apply Prest’s notion of $D\varphi ({\mathbf {x}})$, the ppf in the language of right $R$-modules dual to $\varphi$, to show that the model theory of left $R$-modules as developed by Ziegler [Z] is in some sense dual to the model theory of right $R$-modules. We prove that the topologies on the left and right Ziegler spectra are "isomorphic" (Proposition 4.4). When the lattice of ppfs is well behaved, there is a homeomorphism $D$ between the left and right Ziegler spectra which assigns to a given pure-injective indecomposable left $R$-module $U$ the dual pure-injective indecomposable right $R$-module $DU$. Theorem 6.6 asserts that given a complete theory $T$ of left $R$-modules, there is a dual complete theory $DT$ of right $R$-modules with corresponding Baur-Garavaglia-Monk invariants. In the end, we give some conditions on a pure-injective indecomposable $_RU$ which ensure that its dual $DU$ may be represented as a hom set of the form ${\operatorname {Hom}_S}{(_R}{U_S},{E_S})$ where $S$ is some ring making $_R{U_S}$ into a bimodule and ${E_S}$ is injective.References
- Paul Eklof and Gabriel Sabbagh, Model-completions and modules, Ann. Math. Logic 2 (1970/71), no. 3, 251–295. MR 277372, DOI 10.1016/0003-4843(71)90016-7 Ivo Herzog, Some model theory of modules, Doctoral Dissertation, Univ. Notre Dame, 1989.
- Carl Faith, Algebra. II, Grundlehren der Mathematischen Wissenschaften, No. 191, Springer-Verlag, Berlin-New York, 1976. Ring theory. MR 0427349
- Mike Prest, Model theory and modules, London Mathematical Society Lecture Note Series, vol. 130, Cambridge University Press, Cambridge, 1988. MR 933092, DOI 10.1017/CBO9780511600562
- Gabriel Sabbagh and Paul Eklof, Definability problems for modules and rings, J. Symbolic Logic 36 (1971), 623–649. MR 313050, DOI 10.2307/2272466
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953
- Martin Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), no. 2, 149–213. MR 739577, DOI 10.1016/0168-0072(84)90014-9
- Birge Zimmermann-Huisgen and Wolfgang Zimmermann, On the sparsity of representations of rings of pure global dimension zero, Trans. Amer. Math. Soc. 320 (1990), no. 2, 695–711. MR 965304, DOI 10.1090/S0002-9947-1990-0965304-0
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 340 (1993), 37-69
- MSC: Primary 03C60; Secondary 16D90
- DOI: https://doi.org/10.1090/S0002-9947-1993-1091706-3
- MathSciNet review: 1091706