## The nef value and defect of homogeneous line bundles

HTML articles powered by AMS MathViewer

- by Dennis M. Snow PDF
- Trans. Amer. Math. Soc.
**340**(1993), 227-241 Request permission

## Abstract:

Formulas for the nef value of a homogeneous line bundle are derived and applied to the classification of homogeneous spaces with positive defect and to the classification of complete homogeneous real hypersurfaces of projective space.## References

- Jürgen Berndt,
*Real hypersurfaces with constant principal curvatures in complex space forms*, Geometry and topology of submanifolds, II (Avignon, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 10–19. MR**1068732** - Mauro C. Beltrametti, M. Lucia Fania, and Andrew J. Sommese,
*On the discriminant variety of a projective manifold*, Forum Math.**4**(1992), no. 6, 529–547. MR**1189013**, DOI 10.1515/form.1992.4.529 - Mauro C. Beltrametti, Andrew J. Sommese, and Jarosław A. Wiśniewski,
*Results on varieties with many lines and their applications to adjunction theory*, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 16–38. MR**1178717**, DOI 10.1007/BFb0094508 - Armand Borel,
*Linear algebraic groups*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR**0251042** - Thomas E. Cecil and Patrick J. Ryan,
*Focal sets and real hypersurfaces in complex projective space*, Trans. Amer. Math. Soc.**269**(1982), no. 2, 481–499. MR**637703**, DOI 10.1090/S0002-9947-1982-0637703-3 - Lawrence Ein,
*Varieties with small dual varieties. I*, Invent. Math.**86**(1986), no. 1, 63–74. MR**853445**, DOI 10.1007/BF01391495 - Lawrence Ein,
*Varieties with small dual varieties. II*, Duke Math. J.**52**(1985), no. 4, 895–907. MR**816391**, DOI 10.1215/S0012-7094-85-05247-0 - Phillip Griffiths and Joseph Harris,
*Algebraic geometry and local differential geometry*, Ann. Sci. École Norm. Sup. (4)**12**(1979), no. 3, 355–452. MR**559347** - James E. Humphreys,
*Introduction to Lie algebras and representation theory*, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR**0323842** - Steven L. Kleiman,
*Tangency and duality*, Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986, pp. 163–225. MR**846021** - Friedrich Knop and Gisela Menzel,
*Duale Varietäten von Fahnenvarietäten*, Comment. Math. Helv.**62**(1987), no. 1, 38–61 (German). MR**882964**, DOI 10.1007/BF02564437 - Alain Lascoux,
*Degree of the dual of a Grassmann variety*, Comm. Algebra**9**(1981), no. 11, 1215–1225. MR**617782**, DOI 10.1080/00927878108822641 - R. Lazarsfeld and A. Van de Ven,
*Topics in the geometry of projective space*, DMV Seminar, vol. 4, Birkhäuser Verlag, Basel, 1984. Recent work of F. L. Zak; With an addendum by Zak. MR**808175**, DOI 10.1007/978-3-0348-9348-0 - Dennis M. Snow,
*Vanishing theorems on compact Hermitian symmetric spaces*, Math. Z.**198**(1988), no. 1, 1–20. MR**938025**, DOI 10.1007/BF01183035 - Ryoichi Takagi,
*On homogeneous real hypersurfaces in a complex projective space*, Osaka Math. J.**10**(1973), 495–506. MR**336660** - Jacques Tits,
*Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen*, Springer-Verlag, Berlin-New York, 1967 (German). MR**0218489**

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**340**(1993), 227-241 - MSC: Primary 14M17; Secondary 14J40
- DOI: https://doi.org/10.1090/S0002-9947-1993-1144015-8
- MathSciNet review: 1144015