## Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes

HTML articles powered by AMS MathViewer

- by Luis Paris PDF
- Trans. Amer. Math. Soc.
**340**(1993), 149-178 Request permission

## Abstract:

Let $V$ be a real vector space. An*arrangement of hyperplanes*in $V$ is a finite set $\mathcal {A}$ of hyperplanes through the origin. A

*chamber*of $\mathcal {A}$ is a connected component of $V - ({ \cup _{H \in \mathcal {A}}}H)$. The arrangement $\mathcal {A}$ is called

*simplicial*if ${ \cap _{H \in \mathcal {A}}}H = \{ 0\}$ and every chamber of $\mathcal {A}$ is a simplicial cone. For an arrangement $\mathcal {A}$ of hyperplanes in $V$, we set \[ M(\mathcal {A}) = {V_\mathbb {C}} - \left ({\bigcup \limits _{H \in \mathcal {A}} {{H_\mathbb {C}}} } \right ),\] where ${V_\mathbb {C}} = \mathbb {C} \otimes V$ is the complexification of $V$, and, for $H \in \mathcal {A}$ , ${H_\mathbb {C}}$ is the complex hyperplane of ${V_\mathbb {C}}$ spanned by $H$. Let $\mathcal {A}$ be an arrangement of hyperplanes of $V$. Salvetti constructed a simplicial complex $\operatorname {Sal}(\mathcal {A})$ and proved that $\operatorname {Sal}(\mathcal {A})$ has the same homotopy type as $M(\mathcal {A})$. In this paper we give a new short proof of this fact. Afterwards, we define a new simplicial complex $\hat {\operatorname {Sal}}(\mathcal {A})$ and prove that there is a natural map $p:\hat {\operatorname {Sal}}(\mathcal {A}) \to \operatorname {Sal}(\mathcal {A})$ which is the universal cover of $\operatorname {Sal}(\mathcal {A})$. At the end, we use $\hat {\operatorname {Sal}}(\mathcal {A})$ to give a new proof of Deligne’s result: "if $\mathcal {A}$ is a simplicial arrangement of hyperplanes, then $M(\mathcal {A})$ is a $K(\pi ,1)$ space." Namely, we prove that $\hat {\operatorname {Sal}}(\mathcal {A})$ is contractible if $\mathcal {A}$ is a simplicial arrangement.

## References

- Kenneth S. Brown,
*Buildings*, Springer-Verlag, New York, 1989. MR**969123**, DOI 10.1007/978-1-4612-1019-1
R. Cordovil, - Pierre Deligne,
*Les immeubles des groupes de tresses généralisés*, Invent. Math.**17**(1972), 273–302 (French). MR**422673**, DOI 10.1007/BF01406236 - Michael Falk and Richard Randell,
*On the homotopy theory of arrangements*, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 101–124. MR**894288**, DOI 10.2969/aspm/00810101 - Michel Jambu and Hiroaki Terao,
*Free arrangements of hyperplanes and supersolvable lattices*, Adv. in Math.**52**(1984), no. 3, 248–258. MR**744859**, DOI 10.1016/0001-8708(84)90024-0 - E. S. Ljapin,
*Semigroups*, 3rd ed., Translations of Mathematical Monographs, Vol. 3, American Mathematical Society, Providence, R.I., 1974. Translated from the 1960 Russian original by A. A. Brown, J. M. Danskin, D. Foley, S. H. Gould, E. Hewitt, S. A. Walker and J. A. Zilber. MR**0352302** - Albert T. Lundell,
*A Bott map for non-stable homotopy of the unitary group*, Topology**8**(1969), 209–217. MR**238319**, DOI 10.1016/0040-9383(69)90011-1 - Peter Orlik,
*Introduction to arrangements*, CBMS Regional Conference Series in Mathematics, vol. 72, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR**1006880**, DOI 10.1090/cbms/072 - Luis Paris,
*The covers of a complexified real arrangement of hyperplanes and their fundamental groups*, Topology Appl.**53**(1993), no. 1, 75–103. MR**1243871**, DOI 10.1016/0166-8641(93)90101-I
—, - M. Salvetti,
*Topology of the complement of real hyperplanes in $\textbf {C}^N$*, Invent. Math.**88**(1987), no. 3, 603–618. MR**884802**, DOI 10.1007/BF01391833
—, - Hiroaki Terao,
*Arrangements of hyperplanes and their freeness. I*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**27**(1980), no. 2, 293–312. MR**586451** - Hiroaki Terao,
*Modular elements of lattices and topological fibration*, Adv. in Math.**62**(1986), no. 2, 135–154. MR**865835**, DOI 10.1016/0001-8708(86)90097-6 - André Weil,
*Sur les théorèmes de de Rham*, Comment. Math. Helv.**26**(1952), 119–145 (French). MR**50280**, DOI 10.1007/BF02564296

*On the homotopy of the Salvetti complexes determined by simplicial arrangements*, preprint.

*The Deligne complex of a real arrangement of hyperplanes*, preprint. —,

*Arrangements of hyperplanes with property*$D$, preprint.

*On the homotopy theory of complexes associated to metrical-hemisphere complexes*, preprint.

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**340**(1993), 149-178 - MSC: Primary 52B30; Secondary 32S25
- DOI: https://doi.org/10.1090/S0002-9947-1993-1148044-X
- MathSciNet review: 1148044