Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes

Author:
Luis Paris

Journal:
Trans. Amer. Math. Soc. **340** (1993), 149-178

MSC:
Primary 52B30; Secondary 32S25

DOI:
https://doi.org/10.1090/S0002-9947-1993-1148044-X

MathSciNet review:
1148044

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $V$ be a real vector space. An *arrangement of hyperplanes* in $V$ is a finite set $\mathcal {A}$ of hyperplanes through the origin. A *chamber* of $\mathcal {A}$ is a connected component of $V - ({ \cup _{H \in \mathcal {A}}}H)$. The arrangement $\mathcal {A}$ is called *simplicial* if ${ \cap _{H \in \mathcal {A}}}H = \{ 0\}$ and every chamber of $\mathcal {A}$ is a simplicial cone. For an arrangement $\mathcal {A}$ of hyperplanes in $V$, we set \[ M(\mathcal {A}) = {V_\mathbb {C}} - \left ({\bigcup \limits _{H \in \mathcal {A}} {{H_\mathbb {C}}} } \right ),\] where ${V_\mathbb {C}} = \mathbb {C} \otimes V$ is the complexification of $V$, and, for $H \in \mathcal {A}$ , ${H_\mathbb {C}}$ is the complex hyperplane of ${V_\mathbb {C}}$ spanned by $H$. Let $\mathcal {A}$ be an arrangement of hyperplanes of $V$. Salvetti constructed a simplicial complex $\operatorname {Sal}(\mathcal {A})$ and proved that $\operatorname {Sal}(\mathcal {A})$ has the same homotopy type as $M(\mathcal {A})$. In this paper we give a new short proof of this fact. Afterwards, we define a new simplicial complex $\hat {\operatorname {Sal}}(\mathcal {A})$ and prove that there is a natural map $p:\hat {\operatorname {Sal}}(\mathcal {A}) \to \operatorname {Sal}(\mathcal {A})$ which is the universal cover of $\operatorname {Sal}(\mathcal {A})$. At the end, we use $\hat {\operatorname {Sal}}(\mathcal {A})$ to give a new proof of Deligne’s result: "if $\mathcal {A}$ is a simplicial arrangement of hyperplanes, then $M(\mathcal {A})$ is a $K(\pi ,1)$ space." Namely, we prove that $\hat {\operatorname {Sal}}(\mathcal {A})$ is contractible if $\mathcal {A}$ is a simplicial arrangement.

- Kenneth S. Brown,
*Buildings*, Springer-Verlag, New York, 1989. MR**969123**
R. Cordovil, - Pierre Deligne,
*Les immeubles des groupes de tresses généralisés*, Invent. Math.**17**(1972), 273–302 (French). MR**422673**, DOI https://doi.org/10.1007/BF01406236 - Michael Falk and Richard Randell,
*On the homotopy theory of arrangements*, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 101–124. MR**894288**, DOI https://doi.org/10.2969/aspm/00810101 - Michel Jambu and Hiroaki Terao,
*Free arrangements of hyperplanes and supersolvable lattices*, Adv. in Math.**52**(1984), no. 3, 248–258. MR**744859**, DOI https://doi.org/10.1016/0001-8708%2884%2990024-0 - E. S. Ljapin,
*Semigroups*, 3rd ed., American Mathematical Society, Providence, R.I., 1974. Translated from the 1960 Russian original by A. A. Brown, J. M. Danskin, D. Foley, S. H. Gould, E. Hewitt, S. A. Walker and J. A. Zilber; Translations of Mathematical Monographs, Vol. 3. MR**0352302** - Albert T. Lundell,
*A Bott map for non-stable homotopy of the unitary group*, Topology**8**(1969), 209–217. MR**238319**, DOI https://doi.org/10.1016/0040-9383%2869%2990011-1 - Peter Orlik,
*Introduction to arrangements*, CBMS Regional Conference Series in Mathematics, vol. 72, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR**1006880** - Luis Paris,
*The covers of a complexified real arrangement of hyperplanes and their fundamental groups*, Topology Appl.**53**(1993), no. 1, 75–103. MR**1243871**, DOI https://doi.org/10.1016/0166-8641%2893%2990101-I
---, - M. Salvetti,
*Topology of the complement of real hyperplanes in ${\bf C}^N$*, Invent. Math.**88**(1987), no. 3, 603–618. MR**884802**, DOI https://doi.org/10.1007/BF01391833
---, - Hiroaki Terao,
*Arrangements of hyperplanes and their freeness. I*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**27**(1980), no. 2, 293–312. MR**586451** - Hiroaki Terao,
*Modular elements of lattices and topological fibration*, Adv. in Math.**62**(1986), no. 2, 135–154. MR**865835**, DOI https://doi.org/10.1016/0001-8708%2886%2990097-6 - André Weil,
*Sur les théorèmes de de Rham*, Comment. Math. Helv.**26**(1952), 119–145 (French). MR**50280**, DOI https://doi.org/10.1007/BF02564296

*On the homotopy of the Salvetti complexes determined by simplicial arrangements*, preprint.

*The Deligne complex of a real arrangement of hyperplanes*, preprint. ---,

*Arrangements of hyperplanes with property*$D$, preprint.

*On the homotopy theory of complexes associated to metrical-hemisphere complexes*, preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
52B30,
32S25

Retrieve articles in all journals with MSC: 52B30, 32S25

Additional Information

Article copyright:
© Copyright 1993
American Mathematical Society