Multivariate discrete splines and linear Diophantine equations
HTML articles powered by AMS MathViewer
- by Rong Qing Jia
- Trans. Amer. Math. Soc. 340 (1993), 179-198
- DOI: https://doi.org/10.1090/S0002-9947-1993-1159194-6
- PDF | Request permission
Abstract:
In this paper we investigate the algebraic properties of multivariate discrete splines. It turns out that multivariate discrete splines are closely related to linear diophantine equations. In particular, we use a solvability condition for a system of linear diophantine equations to obtain a necessary and sufficient condition for the integer translates of a discrete box spline to be linearly independent. In order to understand the local structure of discrete splines we develop a general theory for certain systems of linear partial difference equations. Using this theory we prove that the integer translates of a discrete box spline are locally linearly independent if and only if they are linearly independent.References
- Asher Ben-Artzi and Amos Ron, Translates of exponential box splines and their related spaces, Trans. Amer. Math. Soc. 309 (1988), no. 2, 683–710. MR 961608, DOI 10.1090/S0002-9947-1988-0961608-7
- C. de Boor and R. DeVore, Approximation by smooth multivariate splines, Trans. Amer. Math. Soc. 276 (1983), no. 2, 775–788. MR 688977, DOI 10.1090/S0002-9947-1983-0688977-5
- C. de Boor and K. Höllig, $B$-splines from parallelepipeds, J. Analyse Math. 42 (1982/83), 99–115. MR 729403, DOI 10.1007/BF02786872 E. Cohen, T. Lyche, and R. Riesenfeld, Discrete box splines and refinement algorithms, Computer Aided Geometric Design 1 (1984), 131-148.
- Wolfgang Dahmen, On multivariate $B$-splines, SIAM J. Numer. Anal. 17 (1980), no. 2, 179–191. MR 567267, DOI 10.1137/0717017
- Wolfgang Dahmen and Charles A. Micchelli, Recent progress in multivariate splines, Approximation theory, IV (College Station, Tex., 1983) Academic Press, New York, 1983, pp. 27–121. MR 754343
- Wolfgang Dahmen and Charles A. Micchelli, Translates of multivariate splines, Linear Algebra Appl. 52/53 (1983), 217–234. MR 709352, DOI 10.1016/0024-3795(83)80015-9 —, Subdivision algorithms for the generation of box spline surfaces, Computer Aided Geometric Design 1 (1984), 115-129.
- Wolfgang Dahmen and Charles A. Micchelli, On the local linear independence of translates of a box spline, Studia Math. 82 (1985), no. 3, 243–263. MR 825481, DOI 10.4064/sm-82-3-243-263
- Wolfgang Dahmen and Charles A. Micchelli, On the solution of certain systems of partial difference equations and linear dependence of translates of box splines, Trans. Amer. Math. Soc. 292 (1985), no. 1, 305–320. MR 805964, DOI 10.1090/S0002-9947-1985-0805964-6
- Wolfgang Dahmen and Charles A. Micchelli, Algebraic properties of discrete box splines, Constr. Approx. 3 (1987), no. 2, 209–221. MR 889556, DOI 10.1007/BF01890565
- Wolfgang Dahmen and Charles A. Micchelli, The number of solutions to linear Diophantine equations and multivariate splines, Trans. Amer. Math. Soc. 308 (1988), no. 2, 509–532. MR 951619, DOI 10.1090/S0002-9947-1988-0951619-X
- Wolfgang Dahmen and Charles A. Micchelli, On multivariate $E$-splines, Adv. Math. 76 (1989), no. 1, 33–93. MR 1004486, DOI 10.1016/0001-8708(89)90043-1
- Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original. MR 600654
- Rong Qing Jia, Linear independence of translates of a box spline, J. Approx. Theory 40 (1984), no. 2, 158–160. MR 732698, DOI 10.1016/0021-9045(84)90026-1
- Rong Qing Jia, Local linear independence of the translates of a box spline, Constr. Approx. 1 (1985), no. 2, 175–182. MR 891538, DOI 10.1007/BF01890029 —, Symmetric magic squares and multivariate splines, preprint 1991.
- Rong Qing Jia, Sherman Riemenschneider, and Zuowei Shen, Dimension of kernels of linear operators, Amer. J. Math. 114 (1992), no. 1, 157–184. MR 1147721, DOI 10.2307/2374741 —, Solvability of systems of linear operator equations, preprint 1991.
- Amos Ron, Exponential box splines, Constr. Approx. 4 (1988), no. 4, 357–378. MR 956173, DOI 10.1007/BF02075467
- Amos Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx. 5 (1989), no. 3, 297–308. MR 996932, DOI 10.1007/BF01889611
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Charles C. Sims, Abstract algebra, John Wiley & Sons, Inc., New York, 1984. A computational approach. MR 746307 Th. Skolem, Diophantine Gleichungen, Chelsea, New York, 1950. R. Stanley, Enumerative combinatorics, Vol. 1, Wadsworth, Belmont, Calif., 1986.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 340 (1993), 179-198
- MSC: Primary 41A15; Secondary 11D04, 39A10, 39A70, 41A63
- DOI: https://doi.org/10.1090/S0002-9947-1993-1159194-6
- MathSciNet review: 1159194