Set convergences. An attempt of classification
HTML articles powered by AMS MathViewer
- by Yves Sonntag and Constantin Zălinescu
- Trans. Amer. Math. Soc. 340 (1993), 199-226
- DOI: https://doi.org/10.1090/S0002-9947-1993-1173857-8
- PDF | Request permission
Abstract:
We endow families of nonempty closed subsets of a metric space with uniformities defined by semimetrics. Such structure is completely determined by a class (which is a family of closed sets) and a type (which is a semimetric). Two types are sufficient to define (and classify) almost all convergences known till now. These two types offer the possibility of defining other set convergences.References
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850
- H. Attouch, D. Azé, and G. Beer, On some inverse stability problems for the epigraphical sum, Nonlinear Anal. 16 (1991), no. 3, 241–254. MR 1091522, DOI 10.1016/0362-546X(91)90226-Q
- Hédy Attouch, Roberto Lucchetti, and Roger J.-B. Wets, The topology of the $\rho$-Hausdorff distance, Ann. Mat. Pura Appl. (4) 160 (1991), 303–320 (1992). MR 1163212, DOI 10.1007/BF01764131
- Hédy Attouch and Roger J.-B. Wets, Quantitative stability of variational systems. I. The epigraphical distance, Trans. Amer. Math. Soc. 328 (1991), no. 2, 695–729. MR 1018570, DOI 10.1090/S0002-9947-1991-1018570-0 —, Quantitative stability of variational systems II. A framework for nonlinear conditioning, Working paper, IIASA, Laxemburg, Austria, 1988. —, Lipschitzian stability of the epsilon-approximate solutions in convex optimisation, Working paper, IIASA, Laxemburg, Austria, 1987. D. Azé, On some metric aspects of set-convergence, Preprint, AVAMAC, Univ. de Perpignan, 1988. —, Remarks on embeddings of hyperspaces into functional spaces, Preprint, AVAMAC, Univ. de Perpignan, 1989.
- D. Azé and J.-P. Penot, Operations on convergent families of sets and functions, Optimization 21 (1990), no. 4, 521–534. MR 1069660, DOI 10.1080/02331939008843576 —, Recent quantitative results about the convergence of convex sets and functions, Functional Anal. Approx., (P. L. Papini, ed.), Bagni di Lucca, Italy, 1988.
- M. Baronti and P. L. Papini, Convergence of sequences of sets, Methods of functional analysis in approximation theory (Bombay, 1985) Internat. Schriftenreihe Numer. Math., vol. 76, Birkhäuser, Basel, 1986, pp. 135–155. MR 904685
- Gerald Beer, Metric spaces with nice closed balls and distance functions for closed sets, Bull. Austral. Math. Soc. 35 (1987), no. 1, 81–96. MR 875510, DOI 10.1017/S000497270001306X
- Gerald Beer, On Mosco convergence of convex sets, Bull. Austral. Math. Soc. 38 (1988), no. 2, 239–253. MR 969914, DOI 10.1017/S0004972700027519
- Gerald Beer, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 15–36. MR 978800, DOI 10.1080/01630568908816288
- Gerald Beer, Convergence of continuous linear functionals and their level sets, Arch. Math. (Basel) 52 (1989), no. 5, 482–491. MR 998621, DOI 10.1007/BF01198356
- Gerald Beer, Conjugate convex functions and the epi-distance topology, Proc. Amer. Math. Soc. 108 (1990), no. 1, 117–126. MR 982400, DOI 10.1090/S0002-9939-1990-0982400-8
- Gerald Beer, A Polish topology for the closed subsets of a Polish space, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1123–1133. MR 1065940, DOI 10.1090/S0002-9939-1991-1065940-6
- Gerald Beer, Topologies on closed and closed convex sets and the Effros measurability of set valued functions, Sém. Anal. Convexe 21 (1991), Exp. No. 2, 44. MR 1154502
- Gerald Beer, The slice topology: a viable alternative to Mosco convergence in nonreflexive spaces, Nonlinear Anal. 19 (1992), no. 3, 271–290. MR 1176063, DOI 10.1016/0362-546X(92)90145-5
- Gerald Beer and Jonathan M. Borwein, Mosco convergence and reflexivity, Proc. Amer. Math. Soc. 109 (1990), no. 2, 427–436. MR 1012924, DOI 10.1090/S0002-9939-1990-1012924-9
- G. A. Beer, C. J. Himmelberg, K. Prikry, and F. S. Van Vleck, The locally finite topology on $2^X$, Proc. Amer. Math. Soc. 101 (1987), no. 1, 168–172. MR 897090, DOI 10.1090/S0002-9939-1987-0897090-2
- Gerald Beer, Alojzy Lechicki, Sandro Levi, and Somashekhar Naimpally, Distance functionals and suprema of hyperspace topologies, Ann. Mat. Pura Appl. (4) 162 (1992), 367–381. MR 1199663, DOI 10.1007/BF01760016
- Gerald Beer and Roberto Lucchetti, Weak topologies for the closed subsets of a metrizable space, Trans. Amer. Math. Soc. 335 (1993), no. 2, 805–822. MR 1094552, DOI 10.1090/S0002-9947-1993-1094552-X
- Gerald Beer and Devidas Pai, On convergence of convex sets and relative Chebyshev centers, J. Approx. Theory 62 (1990), no. 2, 147–169. MR 1068425, DOI 10.1016/0021-9045(90)90029-P
- Claude Berge, Espaces topologiques: Fonctions multivoques, Collection Universitaire de Mathématiques, Vol. III, Dunod, Paris, 1959 (French). MR 0105663
- Jonathan M. Borwein and Simon Fitzpatrick, Mosco convergence and the Kadec property, Proc. Amer. Math. Soc. 106 (1989), no. 3, 843–851. MR 969313, DOI 10.1090/S0002-9939-1989-0969313-4 N. Bourbaki, Topologie générale, Chapitres 1 et 2, Hermann, Paris, 1965. —, Topologie générale, Chapitre 9, Hermann, Paris, 1958. —, Topologie générale, Chapitre 10, Hermann, Paris, 1961. L. Contesse and J.-P. Penot, Continuity of polarity and conjugacy for the epi-distance topology, J. Math. Anal. Appl. (to appear). B. Cornet, Topologies sur les fermés d’un espace métrique, Cahiers Math. Décision, Paris-Dauphine, 1974.
- Peter Z. Daffer and Hideaki Kaneko, Best approximation in metric spaces, Ann. Soc. Sci. Bruxelles Sér. I 96 (1982), no. 1, 17–27. MR 674677
- F. S. De Blasi and J. Myjak, Weak convergence of convex sets in Banach spaces, Arch. Math. (Basel) 47 (1986), no. 5, 448–456. MR 870283, DOI 10.1007/BF01189987 N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1967.
- Edward G. Effros, Convergence of closed subsets in a topological space, Proc. Amer. Math. Soc. 16 (1965), 929–931. MR 181983, DOI 10.1090/S0002-9939-1965-0181983-3
- J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476. MR 139135, DOI 10.1090/S0002-9939-1962-0139135-6
- Brian Fisher, A reformulation of the Hausdorff metric, Rostock. Math. Kolloq. 24 (1983), 71–75. MR 733090
- Brian Fisher, Common fixed points of mappings and set-valued mappings, Rostock. Math. Kolloq. 18 (1981), 69–77. MR 655385 S. Fitzpatrick and A. S. Lewis, Weak$^\ast$ convergence of convex sets, Preprint, 1989.
- Klaus Floret, Weakly compact sets, Lecture Notes in Mathematics, vol. 801, Springer, Berlin, 1980. Lectures held at S.U.N.Y., Buffalo, in Spring 1978. MR 576235
- Sebastiano Francaviglia, Alojzy Lechicki, and Sandro Levi, Quasiuniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), no. 2, 347–370. MR 813603, DOI 10.1016/0022-247X(85)90246-X
- Zdeněk Frolík, Concerning topological convergence of sets, Czechoslovak Math. J. 10(85) (1960), 168–180 (English, with Russian summary). MR 116303
- Christian Hess, Quelques résultats sur la mesurabilité des multifonctions à valeurs dans un espace métrique séparable, Séminaire d’analyse convexe, Vol. 16, Univ. Sci. Tech. Languedoc, Montpellier, 1986, pp. Exp. No. 1, 43 (French). MR 901305
- Richard B. Holmes, Geometric functional analysis and its applications, Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York-Heidelberg, 1975. MR 0410335
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Erwin Klein and Anthony C. Thompson, Theory of correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. MR 752692 G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin, 1969.
- Casimir Kuratowski, Topologie. Vol. I, Monografie Matematyczne, Tom 20, Państwowe Wydawnictwo Naukowe, Warsaw, 1958 (French). 4ème éd. MR 0090795
- A. Lechicki and S. Levi, Wijsman convergence in the hyperspace of a metric space, Boll. Un. Mat. Ital. B (7) 1 (1987), no. 2, 439–451 (English, with Italian summary). MR 896334 R. Lucchetti, A close look at the $AW$-topology, Conference Salerno, Italy, 1990. —, Set convergences with applications to optimization and probability, Ph.D. thesis, Univ. of Calif., Davis, Calif., 1989.
- Roberto Lucchetti, Gabriella Salinetti, and Roger J.-B. Wets, Uniform convergence of probability measures: topological criteria, J. Multivariate Anal. 51 (1994), no. 2, 252–264. MR 1321297, DOI 10.1006/jmva.1994.1061
- G. Matheron, Random sets and integral geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-London-Sydney, 1975. With a foreword by Geoffrey S. Watson. MR 0385969
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
- Umberto Mosco, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518–535. MR 283586, DOI 10.1016/0022-247X(71)90200-9
- S. Mrówka, On the convergence of nets of sets, Fund. Math. 45 (1958), 237–246. MR 98359, DOI 10.4064/fm-45-1-247-253
- S. Mrówka, Some comments on the space of subsets, Set-Valued Mappings, Selections and Topological Properties of $2^X$ (Proc. Conf., SUNY, Buffalo, N.Y., 1969) Lecture Notes in Mathematics, Vol. 171, Springer, Berlin, 1970, pp. 59–63. MR 0270327 J-P. Penot, Preservation of stability and persistence under intersections and operations, Preprint, 1987.
- Jean-Paul Penot, Topologies and convergences on the space of convex functions, Nonlinear Anal. 18 (1992), no. 10, 905–916. MR 1166530, DOI 10.1016/0362-546X(92)90128-2
- Gabriella Salinetti and Roger J.-B. Wets, On the convergence of sequences of convex sets in finite dimensions, SIAM Rev. 21 (1979), no. 1, 18–33. MR 516381, DOI 10.1137/1021002 P. Shunmugaraj, On stability aspects in optimization, Ph.D. thesis, Indian Inst. Tech., Bombay, India, 1990. P. Shunmagaraj and D. Pai, On stability of approximate solutions of minimization problems, Preprint, Indian Inst. Tech. Bombay, India, 1990. Y. Sonntag, Convergence au sens de U. Mosco; théorie et applications à l’approximation des solutions d’inéquations, Thèse d’Etat, Université de Provence, Marseille, 1982. —, Convergence des suites d’ensembles, Monograph, Université de Provence, Marseille, 1987.
- Yves Sonntag and Constantin Zălinescu, Scalar convergence of convex sets, J. Math. Anal. Appl. 164 (1992), no. 1, 219–241. MR 1146585, DOI 10.1016/0022-247X(92)90154-6 —, Set convergences. An attempt of classification, Differential Equations and Control Theory (V. Barbu, ed.), Pitman Research Notes in Math., no. 250, 1991, pp. 312-323.
- R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32–45. MR 196599, DOI 10.1090/S0002-9947-1966-0196599-8
- C. Zălinescu, Continuous dependence on data in abstract control problems, J. Optim. Theory Appl. 43 (1984), no. 2, 277–306. MR 748601, DOI 10.1007/BF00936166 T. Zolezzi, Approximazioni e perturbazioni di problemi di minimo, Book in preparation, Univ. of Genova, Italy.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 340 (1993), 199-226
- MSC: Primary 54A20; Secondary 54B20, 54D55, 54E15
- DOI: https://doi.org/10.1090/S0002-9947-1993-1173857-8
- MathSciNet review: 1173857