## A Frobenius characterization of rational singularity in $2$-dimensional graded rings

HTML articles powered by AMS MathViewer

- by Richard Fedder PDF
- Trans. Amer. Math. Soc.
**340**(1993), 655-668 Request permission

## Abstract:

A ring $R$ is said to be $F$-rational if, for every prime $P$ in $R$, the local ring ${R_P}$ has the property that every system of parameters ideal is tightly closed (as defined by Hochster-Huneke). It is proved that if $R$ is a $2$-dimensional graded ring with an isolated singularity at the irrelevant maximal ideal $m$, then the following are equivalent: (1) $R$ has a rational singularity at $m$. (2) $R$ is $F$-rational. (3) $a(R) < 0$. Here $a(R)$ (as defined by Goto-Watanabe) denotes the least nonvanishing graded piece of the local cohomology module ${H_m}(R)$. The proof of this result relies heavily on the properties of derivations of $R$, and suggests further questions in that direction; paradigmatically, if one knows that $D(a)$ satisfies a certain property for every derivation $D$, what can one conclude about the original ring element $a$?## References

- David A. Buchsbaum and David Eisenbud,
*What makes a complex exact?*, J. Algebra**25**(1973), 259–268. MR**314819**, DOI 10.1016/0021-8693(73)90044-6 - Richard Fedder,
*$F$-purity and rational singularity*, Trans. Amer. Math. Soc.**278**(1983), no. 2, 461–480. MR**701505**, DOI 10.1090/S0002-9947-1983-0701505-0 - Richard Fedder,
*$F$-purity and rational singularity in graded complete intersection rings*, Trans. Amer. Math. Soc.**301**(1987), no. 1, 47–62. MR**879562**, DOI 10.1090/S0002-9947-1987-0879562-4
R. Fedder, R. Hübl, and C. Huneke, - Hubert Flenner,
*Rationale quasihomogene Singularitäten*, Arch. Math. (Basel)**36**(1981), no. 1, 35–44 (German). MR**612234**, DOI 10.1007/BF01223666
R. Fedder and K.-i. Watanabe, - Melvin Hochster and Craig Huneke,
*Tightly closed ideals*, Bull. Amer. Math. Soc. (N.S.)**18**(1988), no. 1, 45–48. MR**919658**, DOI 10.1090/S0273-0979-1988-15592-9 - Melvin Hochster and Craig Huneke,
*Tight closure*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 305–324. MR**1015524**, DOI 10.1007/978-1-4612-3660-3_{1}5
—, - Melvin Hochster and Joel L. Roberts,
*The purity of the Frobenius and local cohomology*, Advances in Math.**21**(1976), no. 2, 117–172. MR**417172**, DOI 10.1016/0001-8708(76)90073-6 - Shiro Goto and Keiichi Watanabe,
*On graded rings. I*, J. Math. Soc. Japan**30**(1978), no. 2, 179–213. MR**494707**, DOI 10.2969/jmsj/03020179 - Ernst Kunz,
*Kähler differentials*, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR**864975**, DOI 10.1007/978-3-663-14074-0 - Joseph Lipman and Bernard Teissier,
*Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals*, Michigan Math. J.**28**(1981), no. 1, 97–116. MR**600418** - Eben Matlis,
*Injective modules over Noetherian rings*, Pacific J. Math.**8**(1958), 511–528. MR**99360** - Hideyuki Matsumura,
*Commutative algebra*, W. A. Benjamin, Inc., New York, 1970. MR**0266911**
V. B. Mehta and V. Srinivas, - C. Peskine and L. Szpiro,
*Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck*, Inst. Hautes Études Sci. Publ. Math.**42**(1973), 47–119 (French). MR**374130**
J.-P. Serre,

*Zeros of differential forms along one-fibered ideals*, preprint.

*A characterization of*$F$-

*regularity in terms of*$F$-

*purity*, Proceedings of the Program in Commutative Algebra at MSRI (held in June and July 1987), Springer-Verlag, 1989.

*Tight closure and strong*$F$-

*regularity*, Mém. Soc. Math. France (numero Consacré au colloque en l’honneur de P. Samuel). —,

*Tight closure, invariant theory and the Briancon-Skoda Theorem*. I, preprint.

*Normal*$F$-

*pure surface singularities*, preprint, Tata Institute, Bombay.

*Algèbre locale. Multiplicités*, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin, Heidelberg, and New York, 1965. K.-i. Watanabe,

*Rational singularities with*${K^\ast }$-

*action*, Lecture Notes in Pure and Appl. Math., 84, Dekker, 1983, pp. 339-351. —,

*Study of*$F$-

*purity in dimension*$2$, preprint, Tokai Univ., Hiratsuka, 259-12, Japan. O. Zariski and P. Samuel,

*Commutative algebra*, vols. I and II, Van Nostrand, Princeton, N. J., 1958 and 1960.

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**340**(1993), 655-668 - MSC: Primary 13A35; Secondary 13D45, 13N05, 14H20
- DOI: https://doi.org/10.1090/S0002-9947-1993-1116312-3
- MathSciNet review: 1116312