Harmonic analysis and ultracontractivity
HTML articles powered by AMS MathViewer
- by Michael Cowling and Stefano Meda
- Trans. Amer. Math. Soc. 340 (1993), 733-752
- DOI: https://doi.org/10.1090/S0002-9947-1993-1127154-7
- PDF | Request permission
Abstract:
Let ${({T_t})_{t > 0}}$ be a symmetric contraction semigroup on the spaces ${L^p}(M)\;(1 \leq p \leq \infty )$, and let the functions $\phi$ and $\psi$ be "regularly related". We show that ${({T_t})_{t > 0}}$ is $\phi$-ultracontractive, i.e., that ${({T_t})_{t > 0}}$ satisfies the condition ${\left \| {{T_t}f} \right \|_\infty } \leq C\phi {(t)^{ - 1}}{\left \| f \right \|_1}$ for all $f$ in ${L^1}(M)$ and all $t$ in ${{\mathbf {R}}^ + }$, if and only if the infinitesimal generator $\mathcal {G}$ has Sobolev embedding properties, namely, ${\left \| {\psi {{(\mathcal {G})}^{ - \alpha }}f} \right \|_q} \leq C{\left \| f \right \|_p}$ for all $f$ in ${L^p}(M)$, whenever $1 < p < q < \infty$ and $\alpha = 1/p - 1/q$ . We establish some new spectral multiplier theorems and maximal function estimates. In particular, we give sufficient conditions on $m$ for $m(\mathcal {G})$ to map ${L^p}(M)$ to ${L^q}(M)$, and for the example where there exists $\mu$ in ${{\mathbf {R}}^ + }$ such that $\phi (t) = {t^\mu }$ for all $t$ in ${{\mathbf {R}}^ + }$ , we give conditions which ensure that the maximal function ${\sup _{t > 0}}|{t^\alpha }{T_t}f( \bullet )|$ is bounded.References
- E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245–287 (English, with French summary). MR 898496
- Thierry Coulhon, Dimension à l’infini d’un semi-groupe analytique, Bull. Sci. Math. 114 (1990), no. 4, 485–500 (French, with English summary). MR 1077272
- Michael G. Cowling, Harmonic analysis on semigroups, Ann. of Math. (2) 117 (1983), no. 2, 267–283. MR 690846, DOI 10.2307/2007077
- E. B. Davies, Hypercontractive and related bounds for double well Schrödinger Hamiltonians, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 136, 407–421. MR 723277, DOI 10.1093/qmath/34.4.407
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal. 59 (1984), no. 2, 335–395. MR 766493, DOI 10.1016/0022-1236(84)90076-4
- Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061–1083. MR 420249, DOI 10.2307/2373688
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- Stefano Meda, A general multiplier theorem, Proc. Amer. Math. Soc. 110 (1990), no. 3, 639–647. MR 1028046, DOI 10.1090/S0002-9939-1990-1028046-7
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
- Jürgen Moser, Correction to: “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math. 20 (1967), 231–236. MR 203268, DOI 10.1002/cpa.3160200107
- Laurent Saloff-Coste, Analyse sur les groupes de Lie à croissance polynômiale, Ark. Mat. 28 (1990), no. 2, 315–331 (French, with English summary). MR 1084020, DOI 10.1007/BF02387385
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory. , Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- N. Th. Varopoulos, Isoperimetric inequalities and Markov chains, J. Funct. Anal. 63 (1985), no. 2, 215–239. MR 803093, DOI 10.1016/0022-1236(85)90086-2
- N. Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), no. 2, 240–260. MR 803094, DOI 10.1016/0022-1236(85)90087-4
- Kôsaku Yosida, Functional analysis, 4th ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, New York-Heidelberg, 1974. MR 0350358
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 340 (1993), 733-752
- MSC: Primary 47D03; Secondary 43A99
- DOI: https://doi.org/10.1090/S0002-9947-1993-1127154-7
- MathSciNet review: 1127154