Function spaces of completely metrizable spaces
HTML articles powered by AMS MathViewer
- by Jan Baars, Joost de Groot and Jan Pelant PDF
- Trans. Amer. Math. Soc. 340 (1993), 871-883 Request permission
Abstract:
Let $X$ and $Y$ be metric spaces and let $\phi :{C_p}(X) \to {C_p}(Y)$ (resp. $\phi :C_p^\ast (X) \to C_p^\ast (Y)$) be a continuous linear surjection. We prove that $Y$ is completely metrizable whenever $X$ is. As a corollary we obtain that complete metrizability is preserved by ${l_p}$ (resp. $l_p^\ast$-equivalence) in the class of all metric spaces. This solves Problem 35 in [2] (raised by Arhangel’skiĭ).References
-
A. V. Arhangel’skiĭ, On linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (1982), 852-855.
—, Problems in ${C_p}$-theory, Open Problems in Topology, (J. van Mill and G. M. Reed, eds.), North-Holland, Amsterdam, 1990, pp. 601-615.
- Jan Baars and Joost de Groot, An isomorphical classification of function spaces of zero-dimensional locally compact separable metric spaces, Comment. Math. Univ. Carolin. 29 (1988), no. 3, 577–595. MR 972840
- Jan Baars and Joost de Groot, On the $l$-equivalence of metric spaces, Fund. Math. 137 (1991), no. 1, 25–43. MR 1100606, DOI 10.4064/fm-137-1-25-43
- Jan Baars, Joost de Groot, and Jan van Mill, A theorem on function spaces, Proc. Amer. Math. Soc. 105 (1989), no. 4, 1020–1024. MR 943792, DOI 10.1090/S0002-9939-1989-0943792-0
- Jan Baars, Joost de Groot, and Jan van Mill, A theorem on function spaces, Proc. Amer. Math. Soc. 105 (1989), no. 4, 1020–1024. MR 943792, DOI 10.1090/S0002-9939-1989-0943792-0
- Jan Baars, Joost de Groot, Jan van Mill, and Jan Pelant, On topological and linear homeomorphisms of certain function spaces, Topology Appl. 32 (1989), no. 3, 267–277. MR 1007105, DOI 10.1016/0166-8641(89)90033-3
- Jens Peter Reus Christensen, Necessary and sufficient conditons for the measurability of certain sets of closed subsets, Math. Ann. 200 (1973), 189–193. MR 334169, DOI 10.1007/BF01425230 —, Topology and Borel structure, Math. Studies, North-Holland, Amsterdam, 1974.
- T. Dobrowolski, S. P. Gul′ko, and J. Mogilski, Function spaces homeomorphic to the countable product of $l^f_2$, Topology Appl. 34 (1990), no. 2, 153–160. MR 1041769, DOI 10.1016/0166-8641(90)90077-F
- Israel Gohberg and Seymour Goldberg, Basic operator theory, Birkhäuser, Boston, Mass., 1981. MR 632943
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- J. van Mill, Infinite-dimensional topology, North-Holland Mathematical Library, vol. 43, North-Holland Publishing Co., Amsterdam, 1989. Prerequisites and introduction. MR 977744 D. Pavlovskiĭ, On spaces of continuous functions, Soviet Math. Dokl. 22 (1980), 34-37.
- Jan Pelant, A remark on spaces of bounded continuous functions, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 3, 335–338. MR 964838
- Jean Saint-Raymond, Une caractérisation des $F_{\sigma }{}_{\delta }$ d’un espace métrisable, Séminaire Choquet, 10e année (1970/71), Initiation à l’analyse, Fasc. 2, Commun. No. 3, Secrétariat Mathématique, Paris, 1971, pp. 4 (French). MR 0478113 Z. Semadeni, Banach spaces of continuous functions, PWN, Warsaw, 1971.
- V. V. Uspenskiĭ, On the topology of a free locally convex space, Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1334–1337 (Russian). MR 712944
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 340 (1993), 871-883
- MSC: Primary 54C35; Secondary 57N17
- DOI: https://doi.org/10.1090/S0002-9947-1993-1160154-X
- MathSciNet review: 1160154