Normality in $X^ 2$ for compact $X$
HTML articles powered by AMS MathViewer
- by G. Gruenhage and P. J. Nyikos
- Trans. Amer. Math. Soc. 340 (1993), 563-586
- DOI: https://doi.org/10.1090/S0002-9947-1993-1162102-5
- PDF | Request permission
Abstract:
In 1977, the second author announced the following consistent negative answer to a question of Katětov: Assuming ${\text {MA}} + \neg {\text {CH}}$, there is a compact nonmetric space $X$ such that ${X^2}$ is hereditarily normal. We give the details of this example, and construct another example assuming ${\text {CH}}$. We show that both examples can be constructed so that ${X^2}\backslash \Delta$ is perfectly normal. We also construct in ${\text {ZFC}}$ a compact nonperfectly normal $X$ such that ${X^2}\backslash \Delta$ is normal.References
- A. V. Arhangel’skii, On bicompacta hereditarily satisfying Souslin’s condition. Tightness and free sequences, Soviet Math. Dokl. 12 (1971), 1253-1257.
- A. V. Arhangel′skiĭ and A. P. Kombarov, On $\nabla$-normal spaces, Topology Appl. 35 (1990), no. 2-3, 121–126. MR 1058792, DOI 10.1016/0166-8641(90)90097-L
- Uri Avraham and Saharon Shelah, Martin’s axiom does not imply that every two $\aleph _{1}$-dense sets of reals are isomorphic, Israel J. Math. 38 (1981), no. 1-2, 161–176. MR 599485, DOI 10.1007/BF02761858
- Ralph Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972), no. 3, 189–194. MR 301711, DOI 10.4064/fm-74-3-189-194
- Eric K. van Douwen, A technique for constructing honest locally compact submetrizable examples, Topology Appl. 47 (1992), no. 3, 179–201. MR 1192308, DOI 10.1016/0166-8641(92)90029-Y
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- W. G. Fleissner, Current research on $Q$ sets, Topology, Vol. I, II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 413–431. MR 588793
- William G. Fleissner and Arnold W. Miller, On $Q$ sets, Proc. Amer. Math. Soc. 78 (1980), no. 2, 280–284. MR 550513, DOI 10.1090/S0002-9939-1980-0550513-4
- G. Gruenhage, On the existence of metrizable or Sorgenfrey subspaces, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 223–230. MR 952608
- Gary Gruenhage, Covering properties on $X^{2}\sbs \Delta$, $W$-sets, and compact subsets of $\Sigma$-products, Topology Appl. 17 (1984), no. 3, 287–304. MR 752278, DOI 10.1016/0166-8641(84)90049-X
- Robert W. Heath and Ernest A. Michael, A property of the Sorgenfrey line, Compositio Math. 23 (1971), 185–188. MR 287515
- F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc. 43 (1937), no. 10, 671–677. MR 1563615, DOI 10.1090/S0002-9904-1937-06622-5
- I. Juhász, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canadian J. Math. 28 (1976), no. 5, 998–1005. MR 428245, DOI 10.4153/CJM-1976-098-8
- Miroslaw Katětov, Complete normality of Cartesian products, Fund. Math. 35 (1948), 271–274. MR 27501, DOI 10.4064/fm-35-1-271-274
- David J. Lutzer, Ordered topological spaces, Surveys in general topology, Academic Press, New York-London-Toronto, Ont., 1980, pp. 247–295. MR 564104
- David J. Lutzer, Another property of the Sorgenfrey line, Compositio Math. 24 (1972), 359–363. MR 307171
- Arnold W. Miller, Special subsets of the real line, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR 776624 P. J. Nyikos, A compact non-metrizable space $P$ such that ${P^2}$ is completely normal, Topology Proc. 2 (1977), 359-364.
- Peter J. Nyikos, Axioms, theorems, and problems related to the Jones lemma, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 441–449. MR 619071
- T. Przymusiński, A Lindelöf space $X$ such that $X^{2}$ is normal but not paracompact, Fund. Math. 78 (1973), no. 3, 291–296. MR 321007, DOI 10.4064/fm-78-3-291-296
- Teodor C. Przymusiński, The existence of $Q$-sets is equivalent to the existence of strong $Q$-sets, Proc. Amer. Math. Soc. 79 (1980), no. 4, 626–628. MR 572316, DOI 10.1090/S0002-9939-1980-0572316-7
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- Mary E. Rudin, Hereditary normality and Souslin lines, General Topology Appl. 10 (1979), no. 1, 103–105. MR 519717, DOI 10.1016/0016-660x(79)90032-1
- V. E. Šneĭder, Continuous images of Suslin and Borel sets. Metrization theorems, Doklady Akad. Nauk SSSR (N.S.) 50 (1945), 77–79 (Russian). MR 0053493
- Z. Szentmiklóssy, $S$-spaces and $L$-spaces under Martin’s axiom, Topology, Vol. I, II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 1139–1145. MR 588860
- F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Dissertationes Math. (Rozprawy Mat.) 148 (1977), 53. MR 454913
- Stevo Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), no. 2, 703–720. MR 716846, DOI 10.1090/S0002-9947-1983-0716846-0
- Stevo Todorčević, Remarks on cellularity in products, Compositio Math. 57 (1986), no. 3, 357–372. MR 829326
- Michael L. Wage, The product of Radon spaces, Uspekhi Mat. Nauk 35 (1980), no. 3(213), 151–153 (Russian). International Topology Conference (Moscow State Univ., Moscow, 1979); Translated from the English by A. V. Arhangel′skiĭ. MR 580635
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 340 (1993), 563-586
- MSC: Primary 54A35; Secondary 54D15, 54D30
- DOI: https://doi.org/10.1090/S0002-9947-1993-1162102-5
- MathSciNet review: 1162102