Prescribing scalar curvatures on the conformal classes of complete metrics with negative curvature
HTML articles powered by AMS MathViewer
- by Zhi Ren Jin
- Trans. Amer. Math. Soc. 340 (1993), 785-810
- DOI: https://doi.org/10.1090/S0002-9947-1993-1163364-0
- PDF | Request permission
Abstract:
Let $({M^n},g)$ be a complete noncompact Riemannian manifold with the curvature bounded between two negative constants. Given a function $K$ on ${M^n}$, in terms of the behaviors of $K$ at infinite, we give a fairly complete answer to when the $K$ can be the scalar curvature function of a complete metric ${g_1}$ which is conformal to $g$.References
- Lars V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359–364. MR 1501949, DOI 10.1090/S0002-9947-1938-1501949-6
- Thierry Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9) 55 (1976), no. 3, 269–296. MR 431287 —, Nonlinear analysis on manifolds, Springer, New York, 1982.
- Patricio Aviles, Conformal complete metrics with prescribed nonnegative Gaussian curvature in $\textbf {R}^2$, Invent. Math. 83 (1986), no. 3, 519–544. MR 827365, DOI 10.1007/BF01394420
- Patricio Aviles and Robert McOwen, Conformal deformations of complete manifolds with negative curvature, J. Differential Geom. 21 (1985), no. 2, 269–281. MR 816672
- Patricio Aviles and Robert C. McOwen, Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds, J. Differential Geom. 27 (1988), no. 2, 225–239. MR 925121
- J. Bland and Morris Kalka, Complete metrics conformal to the hyperbolic disc, Proc. Amer. Math. Soc. 97 (1986), no. 1, 128–132. MR 831400, DOI 10.1090/S0002-9939-1986-0831400-6
- E. Calabi, An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45–56. MR 92069
- Nicola Garofalo and Fang-Hua Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), no. 3, 347–366. MR 882069, DOI 10.1002/cpa.3160400305
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443
- R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, vol. 699, Springer, Berlin, 1979. MR 521983
- Zhi Ren Jin, A counterexample to the Yamabe problem for complete noncompact manifolds, Partial differential equations (Tianjin, 1986) Lecture Notes in Math., vol. 1306, Springer, Berlin, 1988, pp. 93–101. MR 1032773, DOI 10.1007/BFb0082927
- Jerry L. Kazdan, Prescribing the curvature of a Riemannian manifold, CBMS Regional Conference Series in Mathematics, vol. 57, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1985. MR 787227, DOI 10.1090/cbms/057
- Jerry L. Kazdan, Unique continuation in geometry, Comm. Pure Appl. Math. 41 (1988), no. 5, 667–681. MR 948075, DOI 10.1002/cpa.3160410508
- John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, DOI 10.1090/S0273-0979-1987-15514-5
- Robert C. McOwen, Conformal metrics in $\textbf {R}^2$ with prescribed Gaussian curvature and positive total curvature, Indiana Univ. Math. J. 34 (1985), no. 1, 97–104. MR 773395, DOI 10.1512/iumj.1985.34.34005
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)u^{(n+2)/(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493–529. MR 662915, DOI 10.1512/iumj.1982.31.31040
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)e^{2u}=0$ and conformal metrics with prescribed Gaussian curvatures, Invent. Math. 66 (1982), no. 2, 343–352. MR 656628, DOI 10.1007/BF01389399
- Robert Osserman, On the inequality $\Delta u\geq f(u)$, Pacific J. Math. 7 (1957), 1641–1647. MR 98239
- D. H. Sattinger, Conformal metrics in $\textbf {R}^{2}$ with prescribed curvature, Indiana Univ. Math. J. 22 (1972/73), 1–4. MR 305307, DOI 10.1512/iumj.1972.22.22001
- Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. MR 788292 —, A report on some recent progress on nonlinear problems in geometry, preprint.
- R. Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), no. 1, 47–71. MR 931204, DOI 10.1007/BF01393992
- Guido Stampacchia, On some regular multiple integral problems in the calculus of variations, Comm. Pure Appl. Math. 16 (1963), 383–421. MR 155209, DOI 10.1002/cpa.3160160403
- Neil S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 265–274. MR 240748
- Hidehiko Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21–37. MR 125546
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 340 (1993), 785-810
- MSC: Primary 53C21; Secondary 35J60, 58G30
- DOI: https://doi.org/10.1090/S0002-9947-1993-1163364-0
- MathSciNet review: 1163364