Solutions to the nonautonomous bistable equation with specified Morse index. I. Existence
HTML articles powered by AMS MathViewer
- by Nicholas D. Alikakos, Peter W. Bates and Giorgio Fusco
- Trans. Amer. Math. Soc. 340 (1993), 641-654
- DOI: https://doi.org/10.1090/S0002-9947-1993-1167183-0
- PDF | Request permission
Abstract:
We investigate the existence of unstable solutions of specified Morse index for the equation ${\varepsilon ^2}{u_{xx}} - f(x,u) = 0$ on a finite interval and Neumann boundary conditions.References
- N. D. Alikakos, P. W. Bates, and G. Fusco, Solutions to the nonautonomous bistable equation with specified Morse index. Part II: The shape of solutions (in preparation).
- S. B. Angenent, The Morse-Smale property for a semilinear parabolic equation, J. Differential Equations 62 (1986), no.ย 3, 427โ442. MR 837763, DOI 10.1016/0022-0396(86)90093-8
- S. B. Angenent, J. Mallet-Paret, and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, J. Differential Equations 67 (1987), no.ย 2, 212โ242. MR 879694, DOI 10.1016/0022-0396(87)90147-1
- D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974) Lecture Notes in Math., Vol. 446, Springer, Berlin, 1975, pp.ย 5โ49. MR 0427837
- A. V. Babin and M. I. Vishik, Unstable invariant sets of semigroups of nonlinear operators and their perturbations, Uspekhi Mat. Nauk 41 (1986), no.ย 4(250), 3โ34, 239 (Russian). MR 863873
- P. Brunovskรฝ and B. Fiedler, Connecting orbits in scalar reaction diffusion equations, Dynamics reported, Vol. 1, Dynam. Report. Ser. Dynam. Systems Appl., vol. 1, Wiley, Chichester, 1988, pp.ย 57โ89. MR 945964 โ, Connecting orbits in scalar reaction-diffusion equations. II: The complete solution, preprint.
- J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t=\epsilon ^2u_{xx}-f(u)$, Comm. Pure Appl. Math. 42 (1989), no.ย 5, 523โ576. MR 997567, DOI 10.1002/cpa.3160420502
- Jack Carr and Robert Pego, Invariant manifolds for metastable patterns in $u_t=\epsilon ^2u_{xx}-f(u)$, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), no.ย 1-2, 133โ160. MR 1076358, DOI 10.1017/S0308210500031425
- Paul C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR 527914, DOI 10.1007/978-3-642-93111-6
- G. Fusco, A geometric approach to the dynamics of $u_t=\epsilon ^2u_{xx}+f(u)$ for small $\epsilon$, Problems involving change of type (Stuttgart, 1988) Lecture Notes in Phys., vol. 359, Springer, Berlin, 1990, pp.ย 53โ73. MR 1062209, DOI 10.1007/3-540-52595-5_{8}5
- G. Fusco and J. K. Hale, Slow-motion manifolds, dormant instability, and singular perturbations, J. Dynam. Differential Equations 1 (1989), no.ย 1, 75โ94. MR 1010961, DOI 10.1007/BF01048791
- G. Fusco and J. K. Hale, Stable equilibria in a scalar parabolic equation with variable diffusion, SIAM J. Math. Anal. 16 (1985), no.ย 6, 1152โ1164. MR 807902, DOI 10.1137/0516085
- Matthew A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no.ย 2, 285โ314. MR 906392
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244, DOI 10.1007/BFb0089647
- Daniel B. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations 59 (1985), no.ย 2, 165โ205. MR 804887, DOI 10.1016/0022-0396(85)90153-6
- Henry L. Kurland, Monotone and oscillatory equilibrium solutions of a problem arising in population genetics, Nonlinear partial differential equations (Durham, N.H., 1982) Contemp. Math., vol. 17, Amer. Math. Soc., Providence, R.I., 1983, pp.ย 323โ342. MR 706107 O. A. Ladyzenskaya, On the determination of minimal global $B$-attractors for semigroups generated by boundary value problems for nonlinear dissipative partial differential equations, Steklov Math. Inst. Report E-3-87, Leningrad, 1987.
- L. A. Peletier, On a nonlinear diffusion equation arising in population genetics, Ordinary and partial differential equations (Proc. Fourth Conf., Univ. Dundee, Dundee, 1976) Lecture Notes in Math., Vol. 564, Springer, Berlin, 1976, pp.ย 365โ371. MR 0604954 โ, A non-linear eigenvalue problem occurring in population genetics, Lecture Notes in Math., vol. 655, Springer-Verlag, New York, 1978, 170-187.
- Heinz Prรผfer, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen, Math. Ann. 95 (1926), no.ย 1, 499โ518 (German). MR 1512291, DOI 10.1007/BF01206624
- Carlos Rocha, Generic properties of equilibria of reaction-diffusion equations with variable diffusion, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), no.ย 1-2, 45โ55. MR 824206, DOI 10.1017/S0308210500026147
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 340 (1993), 641-654
- MSC: Primary 34B15; Secondary 34E15
- DOI: https://doi.org/10.1090/S0002-9947-1993-1167183-0
- MathSciNet review: 1167183