## Nonfibering spherical $3$-orbifolds

HTML articles powered by AMS MathViewer

- by William D. Dunbar
- Trans. Amer. Math. Soc.
**341**(1994), 121-142 - DOI: https://doi.org/10.1090/S0002-9947-1994-1118824-6
- PDF | Request permission

## Abstract:

Among the finite subgroups of $SO(4)$, members of exactly $21$ conjugacy classes act on ${S^3}$ preserving no fibration of ${S^3}$ by circles. We identify the corresponding spherical $3$-orbifolds, i.e., for each such ${\mathbf {G}} < SO(4)$, we describe the embedded trivalent graph $\{ x \in {S^3}:\exists {\mathbf {I}} \ne {\mathbf {g}} \in {\mathbf {G}}$ s.t. ${\mathbf {g}}(x) = x\} /{\mathbf {G}}$ in the topological space ${S^3}/{\mathbf {G}}$ (which turns out to be homeomorphic to ${S^3}$ in all cases). Explicit fundamental domains (of Dirichlet type) are described for $9$ of the groups, together with the identifications to be made on the boundary. The remaining $12$ spherical orbifolds are obtained as mirror images or (branched) covers of these.## References

- R. H. Bing,
*A homeomorphism between the $3$-sphere and the sum of two solid horned spheres*, Ann. of Math. (2)**56**(1952), 354–362. MR**49549**, DOI 10.2307/1969804 - F. Bonahon and L. Siebenmann,
*The classification of Seifert fibred $3$-orbifolds*, Low-dimensional topology (Chelwood Gate, 1982) London Math. Soc. Lecture Note Ser., vol. 95, Cambridge Univ. Press, Cambridge, 1985, pp. 19–85. MR**827297**, DOI 10.1017/CBO9780511662744.002 - William D. Dunbar,
*Geometric orbifolds*, Rev. Mat. Univ. Complut. Madrid**1**(1988), no. 1-3, 67–99. MR**977042**
—, - Patrick Du Val,
*Homographies, quaternions and rotations*, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR**0169108**
E. Goursat, - Robert Riley,
*Applications of a computer implementation of Poincaré’s theorem on fundamental polyhedra*, Math. Comp.**40**(1983), no. 162, 607–632. MR**689477**, DOI 10.1090/S0025-5718-1983-0689477-2 - Peter Scott,
*The geometries of $3$-manifolds*, Bull. London Math. Soc.**15**(1983), no. 5, 401–487. MR**705527**, DOI 10.1112/blms/15.5.401 - W. Threlfall and H. Seifert,
*Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes*, Math. Ann.**104**(1931), no. 1, 1–70 (German). MR**1512649**, DOI 10.1007/BF01457920
W. Thurston, - William P. Thurston,
*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, DOI 10.1090/S0273-0979-1982-15003-0

*Fibered orbifolds and crystallographic groups*, Ph.D. thesis, Princeton Univ., 1981.

*Sur les substitutions orthogonales et les divisions régulières de l’espace*, Ann. Sci. École Norm. Sup. (3)

**6**(1889), 2-102. A. Hatcher,

*Bianchi orbifolds of small discriminant, an informal report*(preprint).

*The geometry and topology of*$3$-

*manifolds*, Lecture Notes, 1978.

## Bibliographic Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**341**(1994), 121-142 - MSC: Primary 57M50; Secondary 57S25
- DOI: https://doi.org/10.1090/S0002-9947-1994-1118824-6
- MathSciNet review: 1118824