Contributions to the classification of simple modular Lie algebras
HTML articles powered by AMS MathViewer
- by Georgia Benkart, J. Marshall Osborn and Helmut Strade
- Trans. Amer. Math. Soc. 341 (1994), 227-252
- DOI: https://doi.org/10.1090/S0002-9947-1994-1129435-0
- PDF | Request permission
Abstract:
We develop results directed towards the problem of classifying the finite-dimensional simple Lie algebras over an algebraically closed field of characteristic $p > 7$. A $1$-section of such a Lie algebra relative to a torus $T$ of maximal absolute toral rank possesses a unique subalgebra maximal with respect to having a composition series with factors which are abelian or classical simple. In this paper we show that the sum $Q$ of those compositionally classical subalgebras is a subalgebra. This extends to the general case a crucial step in the classification by Block and Wilson of the restricted simple Lie algebras. We derive properties of the filtration which can be constructed using $Q$ and obtain structural information about the $1$-sections and $2$-sections of $Q$ relative to $T$. We further classify all those algebras in which $Q$ is solvable.References
- Georgia Benkart, Cartan subalgebras in Lie algebras of Cartan type, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 157–187. MR 832198
- Georgia Benkart, Simple modular Lie algebras with $1$-sections that are classical or solvable, Comm. Algebra 18 (1990), no. 11, 3633–3638. MR 1068610, DOI 10.1080/00927879008824097 —, Simple modular Lie algebras with a $1$-section that is Witt or Hamiltonian, preprint.
- Georgia Benkart and Thomas Gregory, Graded Lie algebras with classical reductive null component, Math. Ann. 285 (1989), no. 1, 85–98. MR 1010192, DOI 10.1007/BF01442673 G. Benkart, T. Gregory, and A. Premet, The recognition theorem for graded Lie algebras of prime characteristic (in preparation).
- Georgia M. Benkart and J. Marshall Osborn, Rank one Lie algebras, Ann. of Math. (2) 119 (1984), no. 3, 437–463. MR 744860, DOI 10.2307/2007082
- Richard E. Block and Robert Lee Wilson, The simple Lie $p$-algebras of rank two, Ann. of Math. (2) 115 (1982), no. 1, 93–168. MR 644017, DOI 10.2307/1971340
- Richard E. Block and Robert Lee Wilson, The restricted simple Lie algebras are of classical or Cartan type, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 16, , Phys. Sci., 5271–5274. MR 758423, DOI 10.1073/pnas.81.16.5271
- Richard E. Block and Robert Lee Wilson, Restricted simple Lie algebras, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 3–17. MR 832192
- Richard E. Block and Robert Lee Wilson, Classification of the restricted simple Lie algebras, J. Algebra 114 (1988), no. 1, 115–259. MR 931904, DOI 10.1016/0021-8693(88)90216-5 S. P. Demuškin, Cartan subalgebras of the simple Lie $p$-algebras ${W_n}$ and ${S_n}$, Sibirsk. Mat. Zh. 11 (1970), 310-325; English transl. in Siberian Math. J. 11 (1970), 233-245.
- S. P. Demuškin, Cartan subalgebras of simple non-classical Lie $p$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 915–932 (Russian). MR 0327854
- V. G. Kac, Global Cartan pseudogroups and simple Lie algebras of characteristic $p$, Uspehi Mat. Nauk 26 (1971), no. 3(159), 199–200 (Russian). MR 0311731
- V. G. Kac, The classification of the simple Lie algebras over a field with non-zero characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 385–408 (Russian). MR 0276286
- V. G. Kac, A description of the filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 800–834 (Russian). MR 0369452
- Irving Kaplansky, Lie algebras of characteristic $p$, Trans. Amer. Math. Soc. 89 (1958), 149–183. MR 99359, DOI 10.1090/S0002-9947-1958-0099359-7
- A. I. Kostrikin, A theorem on semisimple Lie $p$-algebras, Mat. Zametki 2 (1967), 465–474 (Russian). MR 218416
- A. I. Kostrikin and I. R. Šafarevič, Cartan’s pseudogroups and the $p$-algebras of Lie, Dokl. Akad. Nauk SSSR 168 (1966), 740–742 (Russian). MR 0199235
- A. I. Kostrikin and I. R. Šafarevič, Graded Lie algebras of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 251–322 (Russian). MR 0252460 M. I. Kuznetsov, Simple modular Lie algebras with a solvable maximal subalgebra, Math. USSR-Sbor. 30 (1976), 68-76.
- W. H. Mills and G. B. Seligman, Lie algebras of classical type, J. Math. Mech. 6 (1957), 519–548. MR 0089193, DOI 10.1512/iumj.1957.6.56024
- Helmut Strade and Rolf Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 116, Marcel Dekker, Inc., New York, 1988. MR 929682
- Helmut Strade, The absolute toral rank of a Lie algebra, Lie algebras, Madison 1987, Lecture Notes in Math., vol. 1373, Springer, Berlin, 1989, pp. 1–28. MR 1007321, DOI 10.1007/BFb0088884
- Helmut Strade, The classification of the simple modular Lie algebras. I. Determination of the two-sections, Ann. of Math. (2) 130 (1989), no. 3, 643–677. MR 1025169, DOI 10.2307/1971457
- Helmut Strade, The classification of the simple modular Lie algebras. II. The toral structure, J. Algebra 151 (1992), no. 2, 425–475. MR 1184043, DOI 10.1016/0021-8693(92)90122-3
- Helmut Strade, The classification of the simple modular Lie algebras. III. Solution of the classical case, Ann. of Math. (2) 133 (1991), no. 3, 577–604. MR 1109354, DOI 10.2307/2944320 —, New methods for the classification of the simple modular Lie algebras, Mat. Sb. 181 (1990), 1391-1402. —, Representations of the $({p^2} - 1)$-dimensional algebras of R. E. Block, Canad. J. Math (to appear). —, The classification of the simple modular Lie algebras. IV: The determination of the associated graded algebra, Ann. of Math. (to appear). —, The classification of the simple modular Lie algebras. V: Algebras with a nonsolvable $1$-section, Abh. Math. Sem. Univ. Hamburg (to appear).
- Helmut Strade and Robert Lee Wilson, Classification of simple Lie algebras over algebraically closed fields of prime characteristic, Bull. Amer. Math. Soc. (N.S.) 24 (1991), no. 2, 357–362. MR 1071032, DOI 10.1090/S0273-0979-1991-16033-7 —, The classification of the simple modular Lie algebras. VI: Solution of the final case (in preparation).
- Robert Lee Wilson, A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic, J. Algebra 40 (1976), no. 2, 418–465. MR 412239, DOI 10.1016/0021-8693(76)90206-4
- Robert Lee Wilson, Simple Lie algebras of toral rank one, Trans. Amer. Math. Soc. 236 (1978), 287–295. MR 463252, DOI 10.1090/S0002-9947-1978-0463252-0
- Robert Lee Wilson, Classification of the restricted simple Lie algebras with toral Cartan subalgebras, J. Algebra 83 (1983), no. 2, 531–570. MR 714264, DOI 10.1016/0021-8693(83)90238-7
- Robert Lee Wilson, Simple Lie algebras over fields of prime characteristic, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 407–416. MR 934240
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 341 (1994), 227-252
- MSC: Primary 17B50
- DOI: https://doi.org/10.1090/S0002-9947-1994-1129435-0
- MathSciNet review: 1129435