Some $q$-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras
HTML articles powered by AMS MathViewer
- by Robert A. Gustafson
- Trans. Amer. Math. Soc. 341 (1994), 69-119
- DOI: https://doi.org/10.1090/S0002-9947-1994-1139492-3
- PDF | Request permission
Abstract:
Multidimensional generalizations of beta type integrals of Barnes, Ramanujan, Askey-Wilson, and others are evaluated. These integrals are analogues of the summation theorems for multilateral hypergeometric series associated to the simple Lie algebras of classical type and type ${G_2}$. Many of these integrals can also be written as group integrals over a compact Lie group or conjugation invariant integrals over the corresponding Lie algebra.References
- George E. Andrews, $q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series in Mathematics, vol. 66, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 858826
- George E. Andrews and Richard Askey, Another $q$-extension of the beta function, Proc. Amer. Math. Soc. 81 (1981), no. 1, 97–100. MR 589145, DOI 10.1090/S0002-9939-1981-0589145-1
- George E. Andrews, R. J. Baxter, and P. J. Forrester, Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, J. Statist. Phys. 35 (1984), no. 3-4, 193–266. MR 748075, DOI 10.1007/BF01014383
- Richard Askey, The $q$-gamma and $q$-beta functions, Applicable Anal. 8 (1978/79), no. 2, 125–141. MR 523950, DOI 10.1080/00036817808839221
- Richard Askey, Ramanujan’s extensions of the gamma and beta functions, Amer. Math. Monthly 87 (1980), no. 5, 346–359. MR 567718, DOI 10.2307/2321202
- Richard Askey, Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal. 11 (1980), no. 6, 938–951. MR 595822, DOI 10.1137/0511084
- Richard Askey, An elementary evaluation of a beta type integral, Indian J. Pure Appl. Math. 14 (1983), no. 7, 892–895. MR 714840
- Richard Askey, Continuous Hahn polynomials, J. Phys. A 18 (1985), no. 16, L1017–L1019. MR 812420 —, Continuous $q$-Hermite polynomials when $q > 1$, "$q$-Series and Partitions," (D. Stanton, ed.), Springer, New York, 1989, 151-158. —, Beta integrals and $q$-extensions, Annamalai Univ. Lecture, preprint.
- Richard Askey and Ranjan Roy, More $q$-beta integrals, Rocky Mountain J. Math. 16 (1986), no. 2, 365–372. MR 843057, DOI 10.1216/RMJ-1986-16-2-365
- Richard Askey and James Wilson, A set of hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 13 (1982), no. 4, 651–655. MR 661596, DOI 10.1137/0513043
- Richard Askey and James Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319, iv+55. MR 783216, DOI 10.1090/memo/0319
- N. M. Atakishiyev and S. K. Suslov, The Hahn and Meixner polynomials of an imaginary argument and some of their applications, J. Phys. A 18 (1985), no. 10, 1583–1596. MR 796065
- W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964. MR 0185155 E. W. Barnes, A new development of the theory of hypergeometric functions, Proc. London Math. Soc. (2) 6 (1908), 141-177. N. Bourbaki, Groupes et algebres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1969.
- Louis de Branges, Tensor product spaces, J. Math. Anal. Appl. 38 (1972), 109–148. MR 417337, DOI 10.1016/0022-247X(72)90122-9 G. Gasper, $q$-analogues of a gamma function identity, Amer. Math. Monthly 94 (1987), 199-201.
- R. A. Gustafson, A Whipple’s transformation for hypergeometric series in $\textrm {U}(n)$ and multivariable hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 18 (1987), no. 2, 495–530. MR 876289, DOI 10.1137/0518040
- R. A. Gustafson, Multilateral summation theorems for ordinary and basic hypergeometric series in $\textrm {U}(n)$, SIAM J. Math. Anal. 18 (1987), no. 6, 1576–1596. MR 911651, DOI 10.1137/0518114
- R. A. Gustafson, The Macdonald identities for affine root systems of classical type and hypergeometric series very-well-poised on semisimple Lie algebras, Ramanujan International Symposium on Analysis (Pune, 1987) Macmillan of India, New Delhi, 1989, pp. 185–224. MR 1117471 —, A summation theorem for hypergeometric series very-well-poised on ${G_2}$, SIAM J. Math. Anal. 21 (1990).
- Robert A. Gustafson, A generalization of Selberg’s beta integral, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 97–105. MR 1001607, DOI 10.1090/S0273-0979-1990-15852-5
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Carl S. Herz, Bessel functions of matrix argument, Ann. of Math. (2) 61 (1955), 474–523. MR 69960, DOI 10.2307/1969810
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842
- Mourad E. H. Ismail and Dennis Stanton, On the Askey-Wilson and Rogers polynomials, Canad. J. Math. 40 (1988), no. 5, 1025–1045. MR 973507, DOI 10.4153/CJM-1988-041-0
- Mourad E. H. Ismail, Dennis Stanton, and Gérard Viennot, The combinatorics of $q$-Hermite polynomials and the Askey-Wilson integral, European J. Combin. 8 (1987), no. 4, 379–392. MR 930175, DOI 10.1016/S0195-6698(87)80046-X
- Michio Jimbo and Tetsuji Miwa, A solvable model and related Rogers-Ramanujan type identities, Phys. D 15 (1985), no. 3, 335–353. MR 793895, DOI 10.1016/S0167-2789(85)80003-8 K. W. J. Kadell, A proof of the $q$-Macdonald-Morric conjecture for $B{C_n}$, preprint. E. G. Kalnins and W. Miller, Symmetry techniques for $q$-series: the Askey-Wilson polynomials, Rocky Mountain J. Math.
- Wen-Ch’ing Winnie Li and Jorge Soto-Andrade, Barnes’ identities and representations of $\textrm {GL}(2)$. I. Finite field case, J. Reine Angew. Math. 344 (1983), 171–179. MR 716253
- Dudley E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford University Press, New York, 1940. MR 0002127
- I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal. 13 (1982), no. 6, 988–1007. MR 674768, DOI 10.1137/0513070
- S. C. Milne, A $q$-analog of hypergeometric series well-poised in $\textrm {SU}(n)$ and invariant $G$-functions, Adv. in Math. 58 (1985), no. 1, 1–60. MR 812934, DOI 10.1016/0001-8708(85)90048-9 —, A $U(n)$ generalization of Ramanujan’s $_1{\psi _1}$ summation, J. Math. Anal. Appl. 118 (1986), 263-277.
- S. C. Milne, A $q$-analog of the Gauss summation theorem for hypergeometric series in $\textrm {U}(n)$, Adv. in Math. 72 (1988), no. 1, 59–131. MR 969399, DOI 10.1016/0001-8708(88)90019-9 W. G. Morris, Constant term identities for finite and affine root syustems: conjectures and theorems, Ph.D. thesis, Univ. of Wisconsin-Madson, 1982.
- Mizan Rahman, A simple evaluation of Askey and Wilson’s $q$-beta integral, Proc. Amer. Math. Soc. 92 (1984), no. 3, 413–417. MR 759666, DOI 10.1090/S0002-9939-1984-0759666-X
- Mizan Rahman, Another conjectured $q$-Selberg integral, SIAM J. Math. Anal. 17 (1986), no. 5, 1267–1279. MR 853529, DOI 10.1137/0517088
- S. Ramanujan, A class of definite integrals [Quart. J. Math. 48 (1920), 294–310], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 216–229. MR 2280870 —, Collected Papers of Srinivasa Ramanujan, (G. H. Hardy, P. V. Seshu Aiyar, and B. M. Wilson, eds.), Cambridge Univ. Press, London, 1927; reprinted Chelsea, New York 1962. —, Notebook, Vol. I, Tata Inst. Fundamental Research, Bombay, 1957. —, Notebook, Vol. II, Tata Inst. Fundamental Research, Bombay, 1957.
- Atle Selberg, Remarks on a multiple integral, Norsk Mat. Tidsskr. 26 (1944), 71–78 (Norwegian). MR 18287
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688 V. R. Thiruvenkatchar and K. Venkatchaliengar, Ramanujan at elementary levels ; glimpses, unpublished manuscript. E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 2nd ed., Oxford Univ. Press, Oxford and New York, 1948.
- James A. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980), no. 4, 690–701. MR 579561, DOI 10.1137/0511064
- Robert A. Gustafson, Some $q$-beta and Mellin-Barnes integrals with many parameters associated to the classical groups, SIAM J. Math. Anal. 23 (1992), no. 2, 525–551. MR 1147876, DOI 10.1137/0523026 —, An $SU(n)$ $q$-beta integral transformation and multiple hypergeometric series identities, preprint.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 341 (1994), 69-119
- MSC: Primary 33D05; Secondary 17B20, 33C45, 33C80, 33D70, 33D80
- DOI: https://doi.org/10.1090/S0002-9947-1994-1139492-3
- MathSciNet review: 1139492