A functional from geometry with applications to discrepancy estimates and the Radon transform
HTML articles powered by AMS MathViewer
- by Allen D. Rogers
- Trans. Amer. Math. Soc. 341 (1994), 275-313
- DOI: https://doi.org/10.1090/S0002-9947-1994-1169082-8
- PDF | Request permission
Abstract:
Estimates of discrepancy, or irregularities of distribution, are obtained for measures without atoms. Two estimators are used, the half-space, or separation, discrepancy ${D_S}$ and a geometric functional ${I^\alpha }$. A representation formula for the generalized energy integral ${I^\alpha }$ is developed. Norm inequalities for the Radon transform are obtained as an application of the continuous discrepancy results. Integral geometric notions play a prominent role.References
- Ralph Alexander, Generalized sums of distances, Pacific J. Math. 56 (1975), no. 2, 297–304. MR 513964
- R. Alexander, Geometric methods in the study of irregularities of distribution, Combinatorica 10 (1990), no. 2, 115–136. MR 1082645, DOI 10.1007/BF02123006
- Ralph Alexander, Principles of a new method in the study of irregularities of distribution, Invent. Math. 103 (1991), no. 2, 279–296. MR 1085108, DOI 10.1007/BF01239514
- Ralph Alexander and Kenneth B. Stolarsky, Extremal problems of distance geometry related to energy integrals, Trans. Amer. Math. Soc. 193 (1974), 1–31. MR 350629, DOI 10.1090/S0002-9947-1974-0350629-3
- J. Beck, On a problem of K. F. Roth concerning irregularities of point distribution, Invent. Math. 74 (1983), no. 3, 477–487. MR 724016, DOI 10.1007/BF01394247
- József Beck, Sums of distances between points on a sphere—an application of the theory of irregularities of distribution to discrete geometry, Mathematika 31 (1984), no. 1, 33–41. MR 762175, DOI 10.1112/S0025579300010639
- József Beck and William W. L. Chen, Irregularities of distribution, Cambridge Tracts in Mathematics, vol. 89, Cambridge University Press, Cambridge, 1987. MR 903025, DOI 10.1017/CBO9780511565984
- Göran Björck, Distributions of positive mass, which maximize a certain generalized energy integral, Ark. Mat. 3 (1956), 255–269. MR 78470, DOI 10.1007/BF02589412
- Salomon Bochner, Harmonic analysis and the theory of probability, University of California Press, Berkeley-Los Angeles, Calif., 1955. MR 0072370
- Stanley R. Deans, The Radon transform and some of its applications, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. MR 709591
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- P. Erdős, Problems and results on diophantine approximations, Compositio Math. 16 (1964), 52–65 (1964). MR 179131
- Gerald B. Folland, Real analysis, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. Modern techniques and their applications; A Wiley-Interscience Publication. MR 767633 O. Frostman, Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. 3 (1935), 1-118.
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Alexander Hertle, Continuity of the Radon transform and its inverse on Euclidean space, Math. Z. 184 (1983), no. 2, 165–192. MR 716270, DOI 10.1007/BF01252856
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- D. M. Oberlin and E. M. Stein, Mapping properties of the Radon transform, Indiana Univ. Math. J. 31 (1982), no. 5, 641–650. MR 667786, DOI 10.1512/iumj.1982.31.31046 G. Pólya and G. Szegö, Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen, J. Reine Angew. Math. 165 (1931), 4-49.
- Johann Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Computed tomography (Cincinnati, Ohio, 1982) Proc. Sympos. Appl. Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1982, pp. 71–86 (German). MR 692055 A. D. Rogers, Theory and applications of a functional from metric geometry, Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, 1990.
- K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73–79. MR 66435, DOI 10.1112/S0025579300000541
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Luis A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac. MR 0433364
- Wolfgang M. Schmidt, Irregularities of distribution. IV, Invent. Math. 7 (1969), 55–82. MR 245532, DOI 10.1007/BF01418774
- Wolfgang M. Schmidt, Lectures on irregularities of distribution, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 56, Tata Institute of Fundamental Research, Bombay, 1977. Notes taken by T. N. Shorey. MR 554923
- I. J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. (2) 38 (1937), no. 4, 787–793. MR 1503370, DOI 10.2307/1968835
- I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 522–536. MR 1501980, DOI 10.1090/S0002-9947-1938-1501980-0
- Kenneth B. Stolarsky, Sums of distances between points on a sphere. II, Proc. Amer. Math. Soc. 41 (1973), 575–582. MR 333995, DOI 10.1090/S0002-9939-1973-0333995-9
- Gerold Wagner, On means of distances on the surface of a sphere (lower bounds), Pacific J. Math. 144 (1990), no. 2, 389–398. MR 1061328
- Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313–352 (German). MR 1511862, DOI 10.1007/BF01475864
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 341 (1994), 275-313
- MSC: Primary 11K38; Secondary 44A12
- DOI: https://doi.org/10.1090/S0002-9947-1994-1169082-8
- MathSciNet review: 1169082