On the hyperbolic Kac-Moody Lie algebra $HA_ 1^ {(1)}$
HTML articles powered by AMS MathViewer
- by Seok-Jin Kang
- Trans. Amer. Math. Soc. 341 (1994), 623-638
- DOI: https://doi.org/10.1090/S0002-9947-1994-1120776-X
- PDF | Request permission
Abstract:
In this paper, using a homological theory of graded Lie algebras and the representation theory of $A_1^{(1)}$, we compute the root multiplicities of the hyperbolic Kac-Moody Lie algebra $HA_1^{(1)}$ up to level $4$ and deduce some interesting combinatorial identities.References
- S. Berman and R. V. Moody, Lie algebra multiplicities, Proc. Amer. Math. Soc. 76 (1979), no. 2, 223–228. MR 537078, DOI 10.1090/S0002-9939-1979-0537078-X
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238 E. Date, M. Jimbo, A. Kuniba, T. Miwa, and M. Okado, Paths, Maya diagrams, and representations of $\hat sl(r,C)$, Adv. Stud. Pure Math. 19 (1989), 149-191.
- Alex Jay Feingold, Tensor products of certain modules for the generalized Cartan matrix Lie algebra $A_{1}^{(1)}$, Comm. Algebra 9 (1981), no. 12, 1323–1341. MR 618906, DOI 10.1080/00927878108822649
- Alex J. Feingold and Igor B. Frenkel, A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus $2$, Math. Ann. 263 (1983), no. 1, 87–144. MR 697333, DOI 10.1007/BF01457086
- Alex J. Feingold and James Lepowsky, The Weyl-Kac character formula and power series identities, Adv. in Math. 29 (1978), no. 3, 271–309. MR 509801, DOI 10.1016/0001-8708(78)90020-8
- I. B. Frenkel and V. G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980/81), no. 1, 23–66. MR 595581, DOI 10.1007/BF01391662
- D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986. Translated from the Russian by A. B. Sosinskiĭ. MR 874337, DOI 10.1007/978-1-4684-8765-7
- Ofer Gabber and Victor G. Kac, On defining relations of certain infinite-dimensional Lie algebras, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 185–189. MR 621889, DOI 10.1090/S0273-0979-1981-14940-5
- G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2) 57 (1953), 591–603. MR 54581, DOI 10.2307/1969740
- Nathan Jacobson, Lie algebras, Dover Publications, Inc., New York, 1979. Republication of the 1962 original. MR 559927
- V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1323–1367 (Russian). MR 0259961
- Victor G. Kac, Infinite-dimensional Lie algebras, 2nd ed., Cambridge University Press, Cambridge, 1985. MR 823672
- V. G. Kac, R. V. Moody, and M. Wakimoto, On $E_{10}$, Differential geometrical methods in theoretical physics (Como, 1987) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 250, Kluwer Acad. Publ., Dordrecht, 1988, pp. 109–128. MR 981374
- Victor G. Kac and Dale H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), no. 2, 125–264. MR 750341, DOI 10.1016/0001-8708(84)90032-X S.-J. Kang, Gradations and structure of Kac-Moody Lie algebras, Yale Univ. dissertation, 1990.
- Seok-Jin Kang, Kac-Moody Lie algebras, spectral sequences, and the Witt formula, Trans. Amer. Math. Soc. 339 (1993), no. 2, 463–493. MR 1102889, DOI 10.1090/S0002-9947-1993-1102889-0
- J. Lepowsky, Application of the numerator formula to $k$-rowed plane partitions, Adv. in Math. 35 (1980), no. 2, 179–194. MR 560134, DOI 10.1016/0001-8708(80)90047-X
- J. Lepowsky and S. Milne, Lie algebraic approaches to classical partition identities, Adv. in Math. 29 (1978), no. 1, 15–59. MR 501091, DOI 10.1016/0001-8708(78)90004-X L.-S. Liu, Kostant’s formula in Kac-Moody Lie algebras, Yale Univ. dissertation, 1990. O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque 159-160 (1988).
- Jean-Pierre Serre, Lie algebras and Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1965. Lectures given at Harvard University, 1964. MR 0218496
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 341 (1994), 623-638
- MSC: Primary 17B67; Secondary 11B65
- DOI: https://doi.org/10.1090/S0002-9947-1994-1120776-X
- MathSciNet review: 1120776