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STABILITY OF SPECIAL INSTANTON BUNDLES ON P2"+1

VINCENZO ANCONA AND GIORGIO OTTAVIANI

Abstract. We prove that the special instanton bundles of rank 2« on P2n+1(C)

with a symplectic structure studied by Spindler and Trautmann are stable in the

sense of Mumford-Takemoto. This implies that the generic special instanton

bundle is stable. Moreover all instanton bundles on P5 are stable. We get also

the stability of other related vector bundles.

Introduction

The instanton bundles of rank 2n on p2"+1 (C) were first defined by Okonek

and Spindler in [OS], answering a question posed by Salamon in [Sal], where
the Penrose transformation was generalized to any quaternionic manifold. In

fact P2n+1(C) is the twistor space over P"(H).

Then Spindler and Trautmann gave in [ST2] a remarkable description of

the class of special instanton bundles. A special instanton bundle on p2n+1 of

quantum number k can be defined [ST2, Proposition 4.2] by an exact sequence

0 - c?(-l)k -+ S* -» E -» 0

where S is a Schwarzenberger bundle of rank 2n + k which is in turn defined

by a special exact sequence (see 2.6)

0 _> cf(-l)k -> cf2n+2k -*S^0.

When n = 1 the special instanton bundles are the so-called special 't Hooft

bundles (see [HN] and [BT]). In this case the stability of F is easy to check

because rank E = 2 and moreover E is symplectic.
When k = 1 then 5* = fi'(l) and E is a nullcorrelation bundle. Also in this

case E is symplectic and moreover it is homogeneous and irreducible under the

action of the symplectic group. So it is stable by the theorem of Ramanan [U].

Ein gave in [E] an alternative proof of the stability of nullcorrelation bundles

without using homogeneity.

When k > 2, « > 2 the stability of E is left as an open problem in [ST2].
The purpose of this paper is in fact to prove the following

Main theorem.

(i) Every special symplectic instanton bundle on P2"+1 is stable.
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(ii) The generic special instanton bundle on P2n+1 is stable.

(iii) Every instanton bundle on P5 is stable.

(i) will be proved in Theorem 3.7. (ii) is an easy consequence of (i) and will

be proved in Corollary 3.10. (iii) is Theorem 3.6. The proof of (iii) is based on

a characterization of symplectic instanton bundles (Proposition 2.23).

Our proof of (i) is by induction on n , as in [E] for k = 1. But Ein's proof

does not work if k > 2 because it relies on properties of the restriction of F to

generic two codimensional linear subspaces, which are in fact well known only

for a small family of linear subspaces (see Theorem 3.1).

So we give a cohomological criterion for the stability of a symplectic bundle
(Theorem 3.5) which is similar to a criterion of Hoppe [H] and we apply it to

our situation. The only "hard" tool that we use is a consequence of the results

of Kobayashi, Liibke, Donaldson, Uhlenbeck, and Yau on Hermite-Einstein

bundles, precisely that if F is a stable bundle then the exterior powers /\9 E
are semistable and direct sum of stable bundles.

In general Okonek, Spindler, and Trautmann define [OS, ST2] an instanton

bundle of quantum number k on p2"+1 as a bundle of rank 2« satisfying the

following properties:

(i) The Chern polynomial of F is ct(E) = (1 - t2)~k .
(ii) F has natural cohomology in the range -2« - 1 < q < 0.

(iii) F has trivial splitting type,
(iv) E is simple.

We show (Proposition 2.11) that every 2«-bundle satisfying (i) and (ii) is

simple; hence, (iv) is superfluous (see Definition 2.12).

We get that also the Schwarzenberger bundles are stable (Theorem 2.2 and

Corollary 2.9). Moreover the pullback of a special symplectic instanton bundle

under a finite morphism p2w+1 -> p2"+! remains stable (Corollary 3.17).

After this paper has been written we received a preprint of Bohnhorst and
Spindler [BS] where the stability of rank n Schwarzenberger bundles on P"

and other related bundles was proved.

1. Preliminaries

For basic facts and notations about vector bundles we refer to [OSS]. We use

the definition of stability of Mumford-Takemoto.

Fact 1.1. Let E be a vector bundle. Then for q < rk(F) :

1;/Ay\    ¿i(A'g)
HA E)-rk(r7Y)-

The following useful criterion can be used to establish the stability of a vector
bundle:

Theorem 1.2 (Hoppe [H, Lemma 2.6]). Let X be projective manifold with

Pic(X) = Z,and let E be a vector bundle on X. If H°(X, (A9 F)norm) = 0 for
1 < q < rk(F) - 1 then E is stable.

rk(E) - 1
q-l cx(E)

rk(E)\
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The condition of the theorem is not necessary. The simplest counterexamples

are the nullcorrelation bundles A on p2"+1. In fact (/\9 A)norm contains <f

as direct summand (see also Lemma 1.10).

Remark 1.3. Let X, E be as in Theorem 1.2 and suppose ci(F) = 0. If

77°(X, (/\q F)norm(-l)) = 0 for 1 < q < rank(F) - 1 then F is semistable.
We need also the following well known (compare to [OSS, Corollary to II,

1.2.8]) result.

Lemma 1.4. Let E, F be stable vector bundles on Pm such that cx(E) -

cx(F) = 0. Then every morphism <f>: E —> F is either zero or an isomorphism.

Proof. Let <f>: E —> F be a nonzero morphism. Then Im0 is a nonzero sub-

sheaf of F . If rk(Imr/3) < rk(F) then as F is stable we have cx(Im<f>) < 0 ; this
implies cx(Ker<f>) > 0, contradicting the semistability of E. Hence rk(lm<f>) =

rk(F). If rk(F) > rk(F) then rk(Ker</>) > 0, and the stability of F implies
cx(Kercj)) < 0, whence ci(Im</j) > 0, which is again a contradiction. Then E,

F have the same rank and 4> is injective. This implies that det0: cf —* cf (and

thus also 4>) is an isomorphism.

We have the following important characterization (for the relative definitions

see, e.g., [Lü]).

Theorem 1.5 (Kobayashi, Lübke, Donaldson, Uhlenbeck, Yau [K, Lü, D, UY]).
Let E be a vector bundle E on a projective manifold X.

(i) If E is Hermite-Einstein then it is semistable and a direct sum of stable

bundles (with respect to the Hermite-Einstein metric).

(ii) If E is stable then it is Hermite-Einstein.

We will use only the following

Corollary 1.6. Let E be a stable vector bundle on a projective manifold X. Then

/\q E is semistable and a direct sum of stable bundles (hence they have the same

slope p = cx / rk).

Proof. If suffices to note that if F is Hermite-Einstein also /\9 E is [Lü]. The
semistability of f\g E was known since [M2].

Fact 1.7. Let 0-»£-»F->G->0 be an exact sequence of vector bundles.

Then we have the exact sequences involving alternating and symmetric powers:

(a) 0 - /\? F -» f\q F -» /\í_1 F®G^-► F ® Sq~x G ̂ SqG-+0,

(b) 0^S9E-> Sq~xE ® F-► E ® f\9~l F^f\9F^/\gG^0.

Fact 1.8. Let E be a vector bundle. V/ > 0 f\j E ® E contains f\j+l E as
direct summand. The natural morphisms are locally given by

/\J+1F^/\JF®F,     f\J E ® F -> /V+1 E

1    ;+1
é?i A •• • Aej+x w —T ^(-iy-i+Vi A • •• Mt A • • • A ej+i) ® e¡,

J i=\

(ei A • • • A e¡) <8> e¡, >-* e\ A • ■ • A e¡ A e¿.
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Definition 1.9. A vector bundle F is called symplectic if there exists an iso-
morphism 4>: E —> E* such that 4>* = -</>. This is equivalent to the existence

of a nondegenerate form Y e T7°(A E) ■

Lemma 1.10. Let E be a symplectic vector bundle. For every j such that 0 <

j < rk(F)/2 - 1, cf is a direct summand of f\2j E and E is a direct summand

ofK2i+lE.

Proof. We have the following stronger claim: for ; < rk(F)/2, A/-2 F is

a direct summand of A/ F. In fact let Y e 77°(/\2F) be a nondegenerate

form. We have a canonical morphism <f> : A/ F —► f\} E locally given by

ex A■ ■ • Ae;_21-» ex A■ • ■ Ae¡-2 AY. In [B, Chapter 9, §5, n.3] it is shown that (for

F a vector space) (¡> is injective and there exists a canonical direct summand

of Im <¡>. As everything is natural, the same construction yields the result for

vector bundles. Then remember that A"-'E - l\r+'E (set 2r = rk(F)).

2.  SCHWARZENBERGER AND INSTANTON BUNDLES

The classical Schwarzenberger bundles on Pm were first defined in [Sch] in

the following way:

Definition 2.1. Let r > m be an integer. The exact sequence of sheaves on Pm

(i) o ^cf(-iy-m+x ^cfr+x ^ ^ ^ o

where the map </> is given by the matrix

{'Xq ■ ■•     Xm

■.

Xo xm.

defines an w-bundle #^ on Pm . We call a (classical) Schwarzenberger bundle

and we denote by Erm  any bundle of the form Erm ~ g*£?¿,  for some g £
Aut(Pm).

These bundles were independently studied by Tango in [T].

Theorem 2.2. A Schwarzenberger bundle Erm is stable.

Proof. The proof is a simple application of the criterion of Hoppe (Theorem
1.2). We have p(ErJ = (r-m+l)/m. Then by p(f\q Erm) = q(r-m+l)/m > 0.
Then (A9Erm)n0Tm = (A9Erm)(t) with t < -I. So it is sufficient to prove that

H°((/\9Erm)(-l)) = 0 for 1 < q < m - 1. Taking wedge powers of (1) as in

1.7(b) we have an exact sequence on Pm :

_ rf(-q - l)(r-D ^ . •. ^ ^(_2)(;->-'"+1>

-+^(-i)(r)^(/\9F;)(-i)^o.

The thesis follows cutting into short exact sequences or by a spectral argument.

Corollary 2.3. Let Erm be a Schwarzenberger bundle as in 2.1.

h°{E'm®E'm') = l.
hx(E'm ® Erm *) = m(r + 2)(r - m+1) + I - (r+I)2.

h2(Erm®E'm*) = 0.
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Hence, Schwarzenberger bundles Erm give smooth points in the moduli space Mrm

of all stable bundles with the same rank and Chern classes. They belong to an

irreducible component of dimension m(r + 2)(r - m + 1) + 1 - (r + I)2 .

Proof. We have the exact sequences

(2) 0^Erm*^cfr+x ^cf(iy-m+x ->0,

(3) 0^Erm*(-l)^cf(-l)r+x ^cfr-m+x -»O,

(4) 0^E'm-(-iy-m+l^(E'm*)'+l->Erm®Erm*^0.

By (2) and (3) we obtain H2(Erm*) = H2(Erm*(-l)) = 773(F^*(-1)) = 0.
Then (4) gives h2(Erm ® Erm *) = 0 and

?r  *\ _ 1,1,äu(f;®f;*)-^(f;®f;*)

= (r+l)[h0(Erm*)-hx(Erm*))-(r-m+l)[h0(E^(-l))-hx(Erm*(-l))]

(by (2) and (3))

= (r + l)[(r +l)-(m + l)(r - m + 1)] + (r - m + I)2

= (r + I)2 + (r - m + l)[(r - m + I) - (r + l)(m + 1)]

= (r + I)2 - (r - m + l)m(r + 2).

Erm is stable, hence simple. This gives the result.

Remark 2.4. In [Sch] the moduli space Jf^ of Schwarzenberger bundles Erm is

computed. It coincides with a point when r = m and with PGL(/n+l)/PGL(2)

when r > m + 1. Then when r > m + 2 ^^ C Mrm . In fact the proof of

Theorem 2.2 is still valid if the matrix of the map <j> in (1) is replaced by an

arbitrary matrix with maximum rank.

Definition 2.5 [ST]. Let k > 0. The exact sequence of sheaves on p2"+1

(5) o^^(-l)fc-^¿f2"+2fc^^^O

where the morphism <j> is given by the matrix

-Xq   ■■■    x„ yQ   •••    y„

xo   •••   x„ yo   • • •   y„.
(x0, ... ,x„,y0, ... ,yn) homog. coord, on P2n+1,

defines a (2n + fc)-bundles S?k on p2"+1. We call a (generalized) Schwarzen-

berger bundle and we denote by Sk any bundle of the form Sk ~ g*3?k for

some g £ Aut(P2"+l). Often we will use S for Sk .

Remark 2.6. On the line r — \x\ = • • • = x„ = yx = • • • = yn = 0} we have

S?k\r a cf(l)k ® cf2n. It follows from a semicontinuity argument that this is

the generic splitting.

Definition-Theorem 2.7. There exist injective morphisms cf(-l)k —> Sk* on

P2"+1 such that the quotient E in the sequence

(6) 0-»^(-l)*->S**-»£->()
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is a vector bundle of rank 2n . Any E constructed in this way is called a special

instanton bundle of quantum number k.

Proof. See [ST2].

The above definitions motivate the following general:

Theorem 2.8. Let a, b be integers, 0 < a < b. Let T, E be vector bundles

on Pw defined by exact sequences

(i) 0^(f^l)b ^^m+a+b-l ^7-^0,

(ii) 0-»<7(-l)fl-> T* -^F^O.

Then T is stable and E is simple.

Proof. In order to prove that T is stable we apply again Theorem 1.2. We

have p(T) = b/(m + a - I), so that p(/\9 T) = qb/(m + a - 1) > 0. Then
(A9 ^)norm = (A? T)U) f°r some j < -1. We take wedge powers of (i) as in

1.7(b) and we get

o^&^q-lfri)^...^(f(-i)(™ri)^(/\9T)(-i)^o.

From this sequence it follows that

(7) Ä°(/\?F(-1)) =0    for#<m-l

and then h°((/\9 F)norm) = 0 for q < m - 1. Consider now that

rk(F) = m + a - 1,

„ (A™ n-, -i))-(«+,mt) -,-1 = (" + o»-w(^_«-■>('+'>
_ m(6 - ? - 1) - (a - t - 1) + t(b - a)

m + a — 1
(m-l)(úi-í-l)     _     .

>-;- > 0    for t < a - 2.
m + a - 1

Hence

(A"' T)n0Tm - (A"' T) (j)    for j < -t - 2, t < a - 2.

Thus it suffices to prove that

(8) 77° ((/\W+Í r) (-t - 2)) = 0    for 0 < t < a - 2.

We will show (8) by induction on t. Applying 1.7(a) to the dual of (ii) we get

after twisting

o-/\ r(-2)- f\    T(-iy -...

(Am E* - 0 because rk(F) = m - 1). Using (7) in this sequence we prove (8)

for t = 0.
In the same way the analogous sequence

r . iû
. m+l . m+t—l

0-/\      F(-r-2)-+   /\ F(-/-l)j   -...



STABILITY OF SPECIAL INSTANTON BUNDLES ON P: 683

gives the inductive step. This concludes the proof that T is stable. Now tensor

by F the sequence dual to (ii) and obtain

0^F*®F^F®F^F(l)fl-+0.

Thus h°(E* ® E) < h°(T ® F). Now tensor by T the sequence (ii) and get

0^F(-l)a^F®r ^F®F^0.

From (i) we have hx(T(-l)) - 0 and from the first part of the proof it fol-

lows h°(T ® T*) = 1. Then the result follows from a simple analysis of the

cohomology sequence associated to the above sequence.

Corollary 2.9. A generalized Schwarzenberger bundle is stable. A special instan-
ton bundle is simple.

Remark 2.10. The fact that the special instanton bundles are simple was proved
by Spindler and Trautmann [ST2] in a different way.

Proposition 2.11. Let E be a rank 2« bundle on P2n+1 suchthat E has natural

cohomology in the range -2n - 1 < q < 0 and ct(E) = (1 - t2)~k . Then E is
simple.

Proof. Exactly as in Corollary 1.4 of [OS] we find using Beilinson sequence

[OSS] that F is the cohomology of a monad

0 -» Cf(-l)c -^ (fïn+a+b JU cf(l)b -» 0

for some a, b, c> 0. Set T = (Ker^)*, then rk(F) = 2n + a, cx(T) = b
and the following sequence is exact:

o^c^(-i)c^ f*-^f^o.

This implies that c = b = a = k and we are in the hypothesis of Theorem 2.8.
This concludes the proof.

Definition 2.12. We define an instanton bundle of quantum number k on P2"+1
as a bundle of rank 2« satisfying the following properties:

(i) the Chern polynomial of F is ct(E) = (1 - t2)~k ,
(ii) E has natural cohomology in the range -2« - 1 < q < 0,

(iii) F has trivial splitting type.

Proposition 2.11 shows that instanton bundles are simple: hence this defini-

tion agrees with the one in [ST2]. Spindler and Trautmann have shown [ST2]

that a special instanton bundle as in 2.7 is an instanton bundle and is simple.

This definition differs slightly from the one in [OS], where also the property

that F is symplectic is assumed.

Definition 2.13. Let c, d, m be positive integers such that m < d - c. A

vector bundle S on Pm arising from an exact sequence

(9) 0^cf(-l)c ^cfd ^S^O

is called a Schwarzenberger type bundle (STB).

A Schwarzenberger bundle as in Definition 2.1 or 2.5 is a STB.
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Proposition 2.14. Let S be a stable Schwarzenberger type bundle as in Definition

2.13. Then

h°(S®S*) = 1.
hx(S®S*) = l-c2-d2 + cd(m + l).

h2(S®S*) = 0.

Hence, STB cannot be stable if c2 + d2 - cd(m + 1) > 1.

Proof. Exactly as in Corollary 2.3.

Remark 2.15. In [ST2] the moduli space of generalized Schwarzenberger bun-

dles is computed. It is irreducible and of dimension 4«2 + 8« - 3 (it is G/H

in the notations of [ST2]). By Proposition 2.14 generalized Schwarzenberger

bundles give smooth points in the moduli space of all stable bundles with the

same rank and Chern classes, and they belong to an irreducible component of

dimension (k - l)(4n2 + 4nk - k - 1).

Remark 2.16. The property to be a STB is open. In fact, if S is a STB then
the only nonzero h'(S(-j)) in the range 0 < /', j < m are h°(S) = d and

hm~l(S(-m)) = c, and this property is open. Conversely if a bundle S has

h'(S(-j)) exactly as above, the Beilinson sequence [OSS] shows that it is a STB.

Now observe that if k > 3 then 4«2 + 8« - 3 < (k - l)(4n2 + 4nk - k - 1).
It follows that for k > 3 there exist stable STB which are not generalized

Schwarzenberger bundles.

Proposition 2.17. Every instanton bundle E on p2"+1 of quantum number k

appears as a quotient

(10) 0^^(-l)^S*-*F^0

where S is a stable Schwarzenberger type bundle arising from an exact sequence

(11) o^cf(-l)k-^cf2n+2k ^S-+0.

S is uniquely determined by E and by the sequence (10).

Proof. We refer to Theorem 2.8 and to the proof of Proposition 2.11 for the
existence and the stability of S. We underline that the existence of S relies
on the Beilinson sequence (see [OS]). Suppose now that there exist two exact

sequences

0 - cf(-lf -^S* -^>E^0,     0 ̂  cf(-l)k - S'* -* F -> 0

with S, S' stable STB. As Hx(S(-l)) = 0 the morphism p can be lifted to a
morphism S* —> S'* such the following diagram is commutative:

S* —^-> E

id£

S" -► E

Now the stability of S, S' implies that S ~ S'.

In [KO] it is shown that the simple bundles on Pw have a coarse moduli

space. We can show, applying the following criterion, that this moduli space is

separated at points corresponding to instanton bundles.
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Proposition 2.18 (Kosarew, Okonek [KO, Proposition 6.6]). Let F, G be non-

isomorphic simple vector bundles on Pm . If the points associated to F, G are

nonseparated in the moduli space of simple bundles, then there are nontrivial

morphisms </>: F —> G and y/: G —► F with <j>o y/ = 0, y/ o 0 = 0.

Proposition 2.19. Let F, G be a nonisomorphic instanton bundles on P2/î+1

with the same quantum number k. Then the associated points in the moduli

space of simple bundles are separated.

Proof. We apply Proposition 2.18. Let us suppose that there exist nontrivial

morphisms 4>: F -» G and y/: G -» F with y/ o <¡> = 0. We have the exact

sequences (see Proposition 2.17)

0^^(-l)*^S*^+F^0,    0 (-1)* S"*-Íh o,

where S, S' are stable. As Hx(S(-l)) = 0 it is possible to lift the morphism

4> o y to a nontrivial morphism S* -^+ S'* in order that the following diagram

commutes:

As S, S' are stable, it follows that a is an isomorphism and that S ~ S'. In

the same way we get a commutative diagram

0 -► cf(-l)k -► S* —^ F -> 0

4- 4-4-

0 -► cf(-l)k -—-» S* —?—+ G -► 0

0 -► cf(-l)k -» S* —^ F -► 0

We have yoßoa = y/o(/)oy = 0; then ß o a can be lifted to a nontrivial

morphism S* -» cf(-l)k . This is a contradiction because h°(S(-l)) = 0.

Remark 2.20. The argument of the proof of Proposition 2.19 can be easily

adapted in order to show that if F, G are symplectic instanton bundles on
f2n+x with Hom(F ,G)¿0 then F ~ G.

Proposition 2.21. Let E be an instanton bundle. Then E* is an instanton

bundle.
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Proof. We have the diagram

0

i

cf(-l)k

I
ff2n+2k

s
s   4,

N

0 -► E* -►      S      -^ cf(l)k -► 0

I
0

(j) is surjective and induces the diagram (we set T* = Ker</>)

0 0

I I
cf(-l)k     =     cf(-l)k

I I
0  -►        T*        -►   (f2n+2k   -,  0tl)k   ->  0

I I II
0 --»      E*      -►       S      -► cf(l)k -► 0

I I
0 0

From Theorem 2.8 T* is stable, in particular h°(T*) = 0. Hence h°(E*) = 0.

From this fact and Serre duality it follows easily that F* has natural cohomol-

ogy in the range -2« - 1 < q < 0 and hence it is an instanton bundle.

Remark 2.22. With the notations of the above proof F is self-dual if and only

if S ~ T (see Proposition 2.17).   In the language of monads, if F is the

cohomology of the monad 0 -» cf(-l)k -^ cf2n+2k -itf(l)-»0 then E* is

the cohomology of the dual monad 0 -► cf(-1 )k -£+ cf2n+2k -^(f(l)^O.

Proposition 2.23. Let E be an instanton bundle. E is symplectic if and only if

h°(/\2E) ¿ 0 and h°(A2E*)¿0.

Proof. The "only if part follows by definition. So we may suppose that there

exist nonzero morphisms </> £ H°(/\2 E), y/ £ H°(A2 F*). They induce nonzero
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morphisms (/>': E* —> E, y/' : E -» F*. From the proof of Proposition 2.19 it

follows that (/i'o^'^O. E is simple (Proposition 2.11), hence <f>' and y/' are

symplectic isomorphisms.

3. Special symplectic instanton bundles are stable

We have defined in 2.7 the special instanton bundles.

Theorem 3.1 [ST2, 5.9; ST1, 3.6.1]. Let E be a special instanton bundle on
P2n+1. Suppose moreover that E is symplectic. There exists a one-dimensional

family of linear subspaces p2"-1 such that F|P2„-i ~ F' e cf2 where E' is a

special symplectic instanton bundle on p2"-1.

For further use we need the following:

Lemma 3.2. Let S be a STB bundle on P2n+1 (see Definition 2.13). Let
0 <q < n, n>2. Then

(i) H°(A9S(-l)) = 0.

(ii) Hx(/\9S(-2)) = 0.
(iii) 7/2(A9S(-3)) = 0.

(iv) H°(f\9S®S(-l)) = 0.
(v) Hx(/\9S®S(-2)) = 0.

Proof. Taking wedge powers of (9) as in 1.7(b) we get the sequence

o-,^(-i)rr1)-+...-+^(-i)^,)^^)^/\1?s^o.

Tensoring this equation by cf(-l), cf(-2), cf(-1) it is easy to check respec-

tively (i), (ii), (iii). Now tensor the sequence (9) by /\9 S(-l) and obtain

r ,  a -\k r  .   q 12/1+2/c .   g

(12) o^[/\S(-2)]   ^[/\S(-l)j -+/\ S®S(-1)^0.

Now the cohomology sequence associated to (12) together with (i) and (ii) give
(iv). Finally (v) follows using (ii) and (iii) in the sequence obtained by tensoring
(12) by cf(-l).

Lemma 3.3. Let S be a STB bundle and let E be an instanton bundle as in

2.17. Then for 0 < q < n, n>2,

(i) H°(A9S®E*(-l)) = 0.
(ii) Hx(A9S®E*(-2)) = 0.

Proof. Tensor the sequence dual to (10) by /\9 S(-l) and get

(13) 0^ /\9S®E*(-l) ^ /\9S®S(-l) -+ [f\S]k^0.

Now (iv) of Lemma 3.2 gives (i). Tensoring (13) by cf(-l), (i) and (v) of

Lemma 3.2 give (ii).

Lemma 3.4. Let E be an instanton bundle. For 0 <q <n, n>2, the following

hold:

(i)   T7°(F) = 0.
(ii) 77°(A'?F*(-1)) = 0.

(iii) 7/'(A?T<*(-2)) = 0.

(iv) H°(E*®/\9E*(-l)) = 0.
(v) T71(F*®A9F*(-2)) = 0.
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If E is symplectic then /\9 E* ~ A2" 9 E* and the vanishing above hold for
0<q <2n.

Proof, (i) follows from (10) because h°(S*) = 0 (S is stable from Proposition

2.17). Using Fact 1.8, (ii) and (iii) follow respectively from (iv) and (v). Now

consider the wedge power as in 1.7(a) of the dual of (10)

0^ tf E* - /V S ̂ [AÍ_1 S(l)

Tensoring this sequence by F*(-l) we have

(14)    0^/\V®F*(-l)^/Y?.S®F*(-l)- A-s. F*

The sequence (14) and (i) of Lemma 3.3 give (iv). Tensoring (14) by cf(-l),

(i) and (ii) of Lemma 3.3 give (v).

We are now going to prove the stability of a special symplectic instanton

bundle. It will be a consequence of the following general statement:

Theorem 3.5. Let E be a symplectic vector bundle on a projective manifold X

with Pic(X) = Z such that for q odd, 1 < q < \ rk(F) the following hold:

(i) h°(A9E) = 0.
(ii) h°(A9E®E) = 1.

Then E is stable.

Proof, (i) implies that no coherent subsheaf of odd rank destabilizes E (see,
e.g., the proof of Lemma 2.6 in [H]). Let us suppose that there is a destabilizing

subsheaf Z of F of rank 2t. Furthermore, F is semistable by Remark 1.3,

then c,(Z) = 0.
We have an exact sequence

(15) 0 G^o

where we may suppose Q torsion-free [OSS]. We have also nonzero morphisms

/:d^(A2'zr A2iF and g: A2'E

2<

2i-lA      E ®Q given locally by

exA---Ae2t^ 57 J^-1)'^1 A ' ' ' Aê< A ' ' ' Ai?2<) ® P(e¡)
í=i

Consider now the sequence

/ . 2t       a     . 2r-l

l\   E-^f\       E®Q
On the open set where Q is locally free this sequence is the first part of 1.7(a)

,2f-l
and it is exact. As A      F ® Q is torsion-free, this implies that g o / = 0

2í-l
Tensoring (15) by A      F we get

(16) 0-+Z® /\
2i-l

F®/\
21-1 L

F — A       E®Q

Fact 1.8 implies that f\2'E is a direct summand of A2' xE ® E; it is easy

to check that h
A2'*

it
- g.  From Lemma 1.10 it follows that A   E
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B, c E® /\2t~lE, and by hypothesis (ii) h°(Bt) = 0. Then f(cf) c 0 and

g(0) = 0 : it follows that the direct summand 0 c F ® A2'-1 E goes to zero
with h in (16). Looking at the cohomology sequence associated to (16) we get

that the morphism A2'-1 E ^ E corresponding to 0 c A2t E c E®/\2'~x E ~

Hom(/\2t'x E, E) goes to zero with H°(h) and then factors in a diagram

E

Z

This is a contradiction because by hypothesis (ii) the only (up to a constant)

nonzero morphism A F —^ F is the projection on the direct summand (see

Lemma 1.10), which is surjective.

Theorem 3.6. Let E be an instanton bundle on P5. Then E is stable.

Proof. If F is symplectic the statement follows from Theorem 3.5. In any case
9 9 i

we have A E ~ f\ E* (rank F = 4) and A F ~ F*. If F is not symplectic

from Proposition 2.23 it follows that h°(A2 E) = 0. F* is an instanton bundle

(Proposition 2.21), then h°(E*) = 0 from (i) of Lemma 3.4. We conclude
using Hoppe criterion 1.2.

Theorem 3.7. Let E be a special symplectic instanton bundle on P2n+1. Then

(i) /z°(A2;+1 F) = 0 Vj : 0 < ; < n - 1.

(ii) h°(/\2J+l F ® F) = 1 V; : 0 < j < n - 1.

(iii) A2;+2 E = 0®Bj+x with h°(Bj) = 0 Vy : 0 <j<n- 1.
(iv) F is stable.

(v) /2°(A2> F ® F) = 0 Vj : 0 < ; < n - 1.

Proof. We prove all these statements together by induction on n  (they are

trivial for n = 1). The cases 7 = 0 and j = n - I of (i), (ii), (iii), (v) follow

easily from Lemma 1.10, Remark 2.10, and Lemma 3.4(i). Let H ~ p2"-1 as
in Theorem 3.1. We have the exact sequence

27+1 2j+\
-,2

2j+i „ A 2j+l

0 - A J    E(-2) _ ^A       F(-l)j   -+ A J    E - A '    E\H -+ 0

By Lemma 3.4(h) and (iii), the restriction map H°(A2j+l E) -* H°(A2j+x E\H)

is injective. Lemma 1.10 implies f\2j+x E ~ E © C;- and E\H =¿ F' e 02 , with
E' special symplectic instanton bundle on 77, follows from Theorem 3.1.

Then

2;'+i „, » 27+1 2}
2

27-1
E'®02@Cj\H~[E@Cj]\H~[\      E\H~[\      E'®\/\E'    ©A       E'.

By the inductive hypothesis (we may suppose 0 < j < n-1) A27+1 E' = F'©C-,

A2;_1F' = E' ®C'j_{, A2jE' = 0®B'j with hP{B)) = 0, h°(/\2j+l E') =

A°(A2;_1F') = 0. This implies /z°(C,|i,) = h°([B'j]2 © F' © Cj © Cj_,) = 0.

Thus h°(Cj) = 0 and this proves (i).
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Now A2j+l E ® E ~ (F ® F) © (Q ® F) and by 2.10 in order to prove (ii)

it suffices to prove h°(Cj ® E) = dimHom(F, Cf) = 0. Consider a morphism

4>: E —► Cj and its restriction

<t>H:E'®02~ E\H -* Cj\H a [Tí;-]2 © F' © Cj © Cj_,.

By Lemma 3.4(iv) and (v) the restriction map T7°(F ® Cj) -» 77°(F ® C,|/f) is
injective, so it suffices to prove that 4>h = 0.

By the inductive hypothesis (ii) and (v), we have

h° (/\2j~l E' ® E'] = h° (f\J+l E'®E') = l,    h° (f\2J E'®E')=0.

Then 77°(Cj ® E') = Hom(F', C)) = 0, H^C'^ ®E') = Hom(F', Cj_j) = 0,

H°(B'j ® E') = Hom(F', B'¡) = 0. Thus </>//(F') c E' and <M^2) = 0. If
4>h í 0 then the composition r/3^ o §H would be different from zero (because

E' is simple). Thus 4>* o <fi ± 0 and, as F is simple, F would be a direct

summand of Cj. In this case 0]j would be a direct summand of C¡\h and

this is a contradiction because h°(Cj\n) — 0. This proves (ii).

(iii) is now a trivial consequence of (ii) and of Lemma 1.10.

(iv) is a consequence of (i), (ii) and of Theorem 3.5.

Then, by Corollary 1.6, A2j F is a direct sum of stable bundles with cx = 0.

Lemma 1.4 implies that any morphism F —> f\2j E ~ 0 © Bj is either an

isomorphism on a direct summand or zero. F cannot be a direct summand of

Bj because h°(E\H) = 2 and h°(B'j\H) = 1. This proves (v).

Theorem 3.8 (Ein, Spindler, Trautmann). There exists a coarse irreducible mod-

uli space for special instanton bundles on f2n+x of quantum number k. Its

dimension is 2n2 + 3« for k = 1 and 2nk + 4(n + l)2 - 7 for k>2.

Proof. For k = 1 we have the nullcorrelation bundles (see [E]). For k > 2 the
moduli space is a quotient of G x F in the notations of [ST2, Theorem 6.3].

Remark 3.9. For k odd the moduli space is fine. Anyway, for k even there is

always a universal family over G x F [ST2, §8].

Corollary 3.10. There exists a dense open subset of the coarse moduli space M

of special instanton bundles such that the corresponding bundles are stable.

Proof. By Theorem 3.7 there exists at least one special instanton bundle which

is stable. Then use that stability is an open property [Ml].

Corollary 3.11. Let E be an instanton bundle on P2"+1 of quantum number k.

Then
h°(E®E*) = I,
hx(E ® E*) - h2(E ®E*) = l-k2 + %n2k - 4n2 + Ink2 - 2n2k2.

Proof. The result follows from the sequences (10), (11), and

0 -+ S(-l)k -+S*®S-+F®S-+0,

0-+F®F* -+E®S -*E(l)k ^0.

Corollary 3.12. If n = 2, k>$, or n = 3, fc>5 or n = 4,5,6, k > 4 or
n>l, k>3, then for every instanton bundle E on F2n+l of quantum number

k we have H2(E ® E") ¿ 0.
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Proof. The inequalities in the statement are exactly the positive integral solu-

tions (n > 2) to

1 - k2 + 8n2k - 4n2 + Ink2 - 2n2k2 < 2nk + 4(n + l)2 - 7

(see Theorem 3.8 and Corollary 3.11).

Theorem 3.13. Let E be an instanton bundle and E* be its dual (see Proposition

2.21). They are constructed from the sequences:

0 -> 0(-l)k -» S* -> F -» 0,    0 -+ ¿?(-l)* -» F* -» F* -» 0

(5, T are STB).

Then
H2(E ® F*) ~ 772(5* ® F*) ~ 772(S* ® T).

If E is self-dual we have in particular H2(E ® E*) ~ H2(S* ® S*), so that
h2(E ® E*) depends only on S.

Proof. Tensoring the sequence defining F by F* we get

0-+E*(-l)k -+S*®E* -+E®E* -»0.

It is easy to check
/72(F*(-1)) = 773(F*(-1)) = 0.

Hence it follows T72(F ® F*) ~ H2(S* ®E*). Tensoring the sequence defining
F* by 5* we get

0^S*(-l)k ^S*®T* ^S*®E* -»0.

It is easy to check
T72(S*(-l)) = 7/3(5*(-l)) = 0.

Hence it follows H2(S* ® F*) ~ H2(S* ® T*).

Theorem 3.14. Let E be an instanton bundle on f2n+l of quantum number

k = 2 defined from the sequence 0 —» ¿f (-1 )2 —+ S* —♦ F —+ 0. PFe /zave

A0(S*(l)) = 2« + 2,    Ä1(S*(1)) = 0,    «°(F(1)) = 2n,

hx(E®E*) = 4n2 + l2n-3,        h2(E®E*) = 0.

In particular the moduli space of stable instanton bundle with k = 2 is smooth

of dimension 4n2 + 12« - 3.

Proof. We have rank(S) = 2« + 2, a(S) = 2, S*(l) ¡a A2"+1 5(-l) • As an
application of Fact 1.7(b) we have

0 -» 0(-2n - 2)2n+2 -»-» <f (-1)®«) — A2"+1 S(-l) -»0.

From this sequence it follows that hx(S*(l)) = «'(A2"+1 S(-\)) = 0. Then
it is easy to check that h°(S*(l)) = 2« + 2 and h°(E(l)) = 2« . Tensoring the
sequence 0 -» F* -» 5 -+ 0(l)2 -» 0 by 5* we get 0 -> S* ®E* -+ 5* ®5 -+

S*(l)2 —► 0. It follows from Proposition 2.14 that «2(S* ®5) = 0 and from
the first part of the proof that hx (S* ( 1 )) = 0. From the last sequence we obtain

h2(S* ® E*) = 0. From Theorem 3.13 and Corollary 3.11 the result follows.
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Remark 3.15. A further analysis (see [AO]) shows that the generic special in-

stanton bundle F on P5 with k = 3 satisfies hx(E®E*) = 54, h2(E®E*) = 0,
while if F is a symplectic special instanton bundle on P5 with k = 3 we have
hx(E® E*) = 57, h2(E® E*) = 3. Let M = M(¥5 ; 0, 3, 0, 6) be the moduli
space of stable 4-bundles on P5 with Chern classes cx = 0, c2 = 3, cj, = 0,

C4 = 6. It follows that the component of M containing special instanton bun-

dles is reduced but singular and has dimension 54 (compare with the dimension

of the moduli space of special instanton bundles which is 41 by Theorem 3.8).

Corollary 3.16. Let X M P2"+1 be a cyclic covering of F2n+X with Pic(X) = Z

and let E be a special symplectic instanton bundle on P2"+1.   Then f*E is

stable.

Proof. We can apply Theorem 3.5 because f*E is symplectic. We have fi0 ~

&i=ocf(-ai) for some a, p > 0 (see, e.g., [BPV, Lemma 1.17.2]). Then for q

odd we have

h°(x, f\ f*E) =«°(P2"+1, /\9E®f0) =Y^h0(f2n+x, /\9E(-ai)) =0.
1=0

In the same way h°(/\9 f*E ® f*E) = 1 .

Corollary 3.17. Let n be odd and Qn be the n-dimensional smooth quadric.

Let f: P" -» P" or f: Qn -> P" be a finite morphism. Then the pullback f*E
of a special symplectic instanton bundle is stable.

Proof. The same proof of Corollary 3.16 works because in both cases f0 ~

(&™=Q0(ai) with a¡ < 0 except a0 = 0.
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