Stability of special instanton bundles on $\textbf {P}^ {2n+1}$
HTML articles powered by AMS MathViewer
- by Vincenzo Ancona and Giorgio Ottaviani
- Trans. Amer. Math. Soc. 341 (1994), 677-693
- DOI: https://doi.org/10.1090/S0002-9947-1994-1136544-9
- PDF | Request permission
Abstract:
We prove that the special instanton bundles of rank $2n$ on ${\mathbb {P}^{2n + 1}}(\mathbb {C})$ with a symplectic structure studied by Spindler and Trautmann are stable in the sense of Mumford-Takemoto. This implies that the generic special instanton bundle is stable. Moreover all instanton bundles on ${\mathbb {P}^5}$ are stable. We get also the stability of other related vector bundles.References
- Vincenzo Ancona and G. Ottaviani, On moduli of instanton bundles on $\textbf {P}^{2n+1}$, Pacific J. Math. 171 (1995), no. 2, 343–351. MR 1372232, DOI 10.2140/pjm.1995.171.343 N. Bourbaki, Éléments de mathématique. Algèbre, Livre II, Springer-Verlag, Hermann, Paris, 1959.
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Guntram Bohnhorst and Heinz Spindler, The stability of certain vector bundles on $\textbf {P}^n$, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 39–50. MR 1178718, DOI 10.1007/BFb0094509
- W. Böhmer and G. Trautmann, Special instanton bundles and Poncelet curves, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 325–336. MR 915183, DOI 10.1007/BFb0078852
- S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26. MR 765366, DOI 10.1112/plms/s3-50.1.1
- Lawrence Ein, Some stable vector bundles on $\textbf {P}^{4}$ and $\textbf {P}^{5}$, J. Reine Angew. Math. 337 (1982), 142–153. MR 676047, DOI 10.1515/crll.1982.337.142
- Hans Jürgen Hoppe, Generischer Spaltungstyp und zweite Chernklasse stabiler Vektorraumbündel vom Rang $4$ auf $\textbf {P}_{4}$, Math. Z. 187 (1984), no. 3, 345–360 (German). MR 757476, DOI 10.1007/BF01161952
- A. Hirschowitz and M. S. Narasimhan, Fibrés de ’t Hooft spéciaux et applications, Enumerative geometry and classical algebraic geometry (Nice, 1981), Progr. Math., vol. 24, Birkhäuser, Boston, Mass., 1982, pp. 143–164 (French). MR 685768
- Shoshichi Kobayashi, Curvature and stability of vector bundles, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 4, 158–162. MR 664562
- Siegmund Kosarew and Christian Okonek, Global moduli spaces and simple holomorphic bundles, Publ. Res. Inst. Math. Sci. 25 (1989), no. 1, 1–19. MR 999347, DOI 10.2977/prims/1195173759
- Martin Lübke, Stability of Einstein-Hermitian vector bundles, Manuscripta Math. 42 (1983), no. 2-3, 245–257. MR 701206, DOI 10.1007/BF01169586
- Masaki Maruyama, Openness of a family of torsion free sheaves, J. Math. Kyoto Univ. 16 (1976), no. 3, 627–637. MR 429899, DOI 10.1215/kjm/1250522875
- Masaki Maruyama, The theorem of Grauert-Mülich-Spindler, Math. Ann. 255 (1981), no. 3, 317–333. MR 615853, DOI 10.1007/BF01450706
- Christian Okonek and Heinz Spindler, Mathematical instanton bundles on $\textbf {P}^{2n+1}$, J. Reine Angew. Math. 364 (1986), 35–50. MR 817636, DOI 10.1515/crll.1986.364.35
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
- S. M. Salamon, Quaternionic structures and twistor spaces, Global Riemannian geometry (Durham, 1983) Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1984, pp. 65–74. MR 757207
- R. L. E. Schwarzenberger, Vector bundles on the projective plane, Proc. London Math. Soc. (3) 11 (1961), 623–640. MR 137712, DOI 10.1112/plms/s3-11.1.623 H. Spindler and G. Trautmann, Rational normal curves and the geometry of special instanton bundles on ${\mathbb {P}^{2n + 1}}$, Math. Gottingensis 18 (1987).
- H. Spindler and G. Trautmann, Special instanton bundles on $\textbf {P}_{2N+1}$, their geometry and their moduli, Math. Ann. 286 (1990), no. 1-3, 559–592. MR 1032947, DOI 10.1007/BF01453589
- Hiroshi Tango, On $(n-1)$-dimensional projective spaces contained in the Grassmann variety $\textrm {Gr}(n,\,1)$, J. Math. Kyoto Univ. 14 (1974), 415–460. MR 371915, DOI 10.1215/kjm/1250523169
- Hiroshi Umemura, On a theorem of Ramanan, Nagoya Math. J. 69 (1978), 131–138. MR 473243, DOI 10.1017/S0027763000017992
- K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257–S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861491, DOI 10.1002/cpa.3160390714
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 341 (1994), 677-693
- MSC: Primary 14F05
- DOI: https://doi.org/10.1090/S0002-9947-1994-1136544-9
- MathSciNet review: 1136544