A singular representation of $E_ 6$
HTML articles powered by AMS MathViewer
- by B. Binegar and R. Zierau
- Trans. Amer. Math. Soc. 341 (1994), 771-785
- DOI: https://doi.org/10.1090/S0002-9947-1994-1139491-1
- PDF | Request permission
Abstract:
Algebraic properties of a singular representation of ${{\mathbf {E}}_6}$ are studied. This representation has the Joseph ideal as its annihilator and it remains irreducible when restricted to ${{\mathbf {F}}_4}$.References
- W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. III. Characteristic varieties of Harish-Chandra modules and of primitive ideals, Invent. Math. 80 (1985), no. 1, 1–68. MR 784528, DOI 10.1007/BF01388547
- Jen-Tseh Chang, Remarks on localization and standard modules: the duality theorem on a generalized flag variety, Proc. Amer. Math. Soc. 117 (1993), no. 3, 585–591. MR 1145942, DOI 10.1090/S0002-9939-1993-1145942-3
- Gordon Bradley Elkington, Centralizers of unipotent elements in semisimple algebraic groups, J. Algebra 23 (1972), 137–163. MR 308228, DOI 10.1016/0021-8693(72)90052-X
- Thomas Enright, Roger Howe, and Nolan Wallach, A classification of unitary highest weight modules, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 97–143. MR 733809
- Thomas J. Enright and Anthony Joseph, An intrinsic analysis of unitarizable highest weight modules, Math. Ann. 288 (1990), no. 4, 571–594. MR 1081264, DOI 10.1007/BF01444551 D. Garfinkle, A new construction of the Joseph ideal, Ph.D. Thesis, M.I.T., 1982.
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 1–29. MR 404366, DOI 10.24033/asens.1302
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI 10.2307/2372999 —, The vanishing of scalar curvature and the minimal representation of $SO(4,4)$, M.I.T. preprint.
- Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/70), 61–80 (German). MR 259164, DOI 10.1007/BF01389889 J. Schwartz, The determination of the admissible orbits in the real classical groups, Ph.D. dissertation, MIT, Cambridge, Mass., 1987.
- David A. Vogan Jr., Gel′fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98. MR 506503, DOI 10.1007/BF01390063
- David A. Vogan Jr., Singular unitary representations, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 506–535. MR 644845 —, Representations of real reductive Lie groups, Birkhäuser, Boston, Mass., 1981.
- David A. Vogan Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987. MR 908078 —, Associated varieties and unipotent representations, preprint.
- David A. Vogan Jr. and Gregg J. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), no. 1, 51–90. MR 762307
- Nolan R. Wallach, The asymptotic behavior of holomorphic representations, Mém. Soc. Math. France (N.S.) 15 (1984), 291–305. Harmonic analysis on Lie groups and symmetric spaces (Kleebach, 1983). MR 789089 R. Zierau, Geometric constructions of unitary highest weight representations, Ph.D. dissertation, Univ. of California, Berkeley, 1984.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 341 (1994), 771-785
- MSC: Primary 22E47
- DOI: https://doi.org/10.1090/S0002-9947-1994-1139491-1
- MathSciNet review: 1139491