Regularity of algebras related to the Sklyanin algebra
HTML articles powered by AMS MathViewer
- by J. T. Stafford
- Trans. Amer. Math. Soc. 341 (1994), 895-916
- DOI: https://doi.org/10.1090/S0002-9947-1994-1148046-4
- PDF | Request permission
Abstract:
This paper continues the research of [SS] by finding further examples of (Artin-Schelter) regular rings of dimension four. Unlike the threedimensional case studied in [ATV1, 2], these examples show that the fourdimensional regular rings are not uniquely determined by their associated geometric data. Indeed, we find a one-parameter family of regular algebras associated to this data.References
- Michael Artin and William F. Schelter, Graded algebras of global dimension $3$, Adv. in Math. 66 (1987), no. 2, 171–216. MR 917738, DOI 10.1016/0001-8708(87)90034-X M. Artin, J. Tate and M. Van den Bergh, Some algebras associated to automorphisms of curves, The Grothendieck Festschrift (P. Cartier, et al. eds.), Birkhäuser, 1990.
- M. Artin, J. Tate, and M. Van den Bergh, Modules over regular algebras of dimension $3$, Invent. Math. 106 (1991), no. 2, 335–388. MR 1128218, DOI 10.1007/BF01243916
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 131423, DOI 10.1112/plms/s3-7.1.414
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Thierry Levasseur, Some properties of noncommutative regular graded rings, Glasgow Math. J. 34 (1992), no. 3, 277–300. MR 1181768, DOI 10.1017/S0017089500008843
- Clas Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 291–338. MR 846457, DOI 10.1007/BFb0075468 Yu. I. Manin, Quantum groups and non-commutative geometry, Publ. Centre Rech. Math., Univ. Montreal, 1988.
- David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29–100. MR 0282975
- A. V. Odesskiĭ and B. L. Feĭgin, Sklyanin’s elliptic algebras, Funktsional. Anal. i Prilozhen. 23 (1989), no. 3, 45–54, 96 (Russian); English transl., Funct. Anal. Appl. 23 (1989), no. 3, 207–214 (1990). MR 1026987, DOI 10.1007/BF01079526
- A. V. Odesskiĭ and B. L. Feĭgin, Sklyanin’s elliptic algebras, Funktsional. Anal. i Prilozhen. 23 (1989), no. 3, 45–54, 96 (Russian); English transl., Funct. Anal. Appl. 23 (1989), no. 3, 207–214 (1990). MR 1026987, DOI 10.1007/BF01079526
- Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. MR 265437, DOI 10.1090/S0002-9947-1970-0265437-8
- E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation, Funktsional. Anal. i Prilozhen. 16 (1982), no. 4, 27–34, 96 (Russian). MR 684124 —, Some algebraic structures connected to the Yang-Baxter equation. Representations of quantum algebras, Functional Anal. Appl. 17 (1983), 273-284.
- S. P. Smith and J. T. Stafford, Regularity of the four-dimensional Sklyanin algebra, Compositio Math. 83 (1992), no. 3, 259–289. MR 1175941 J. T. Stafford, Auslander-regular rings and maximal orders, J. London Math. Soc. (to appear).
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 341 (1994), 895-916
- MSC: Primary 16W30; Secondary 14A22
- DOI: https://doi.org/10.1090/S0002-9947-1994-1148046-4
- MathSciNet review: 1148046