Carleson measures on spaces of homogeneous type
HTML articles powered by AMS MathViewer
- by Steven C. Gadbois and William T. Sledd
- Trans. Amer. Math. Soc. 341 (1994), 841-862
- DOI: https://doi.org/10.1090/S0002-9947-1994-1149122-2
- PDF | Request permission
Abstract:
Let $X$ be a space of homogeneous type in the sense of Coifman and Weiss $[{\text {CW}}2]$ and let ${X^ + } = X \times {{\mathbf {R}}^ + }$. A positive function $F$ on ${X^ + }$ is said to have horizontal bounded ratio $({\text {HBR}})$ on ${X^ + }$ if there is a constant ${A_F}$ so that $F(x,t) \leq {A_F}F(y,t)$ whenever $\rho (x,y) < t$. (By Harnack’s inequality, a well-known example is any positive harmonic function in the upper half plane.) ${\text {HBR}}$ is a rich class that is closed under a wide variety of operations and it provides useful majorants for many classes of functions that are encountered in harmonic analysis. We are able to prove theorems in spaces of homogeneous type for functions in ${\text {HBR}}$ which are analogous to the classical Carleson measure theorems and to extend these results to the functions which they majorize. These results may be applied to obtain generalizations of the original Carleson measure theorem, and of results of Flett’s which contain the Hardy-Littlewood theorems on intermediate spaces of analytic functions. Hörmander’s generalization of Carleson’s theorem is included and it is possible to extend those results to the atomic ${H^p}$ spaces of Coifman and Weiss.References
- Éric Amar and Aline Bonami, Mesures de Carleson d’ordre $\alpha$ et solutions au bord de l’équation $\bar \partial$, Bull. Soc. Math. France 107 (1979), no. 1, 23–48 (French, with English summary). MR 532560
- Rodrigo Bañuelos and Charles N. Moore, Laws of the iterated logarithm, sharp good-$\lambda$ inequalities and $L^p$-estimates for caloric and harmonic functions, Indiana Univ. Math. J. 38 (1989), no. 2, 315–344. MR 997386, DOI 10.1512/iumj.1989.38.38016 D. Békollé, Inégalités à poids pour le projecteur de Bergman dans la boule unité de ${{\mathbf {C}}^n}$, Studia Math. 71 (1982), 305-323.
- A. Benedek and R. Panzone, The space $L^{p}$, with mixed norm, Duke Math. J. 28 (1961), 301–324. MR 126155
- A.-P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1976), no. 3, 297–306. MR 442579, DOI 10.4064/sm-57-3-297-306
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, DOI 10.2307/1970375
- Joseph A. Cima and Warren R. Wogen, A Carleson measure theorem for the Bergman space on the ball, J. Operator Theory 7 (1982), no. 1, 157–165. MR 650200
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- Peter L. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143–146. MR 241650, DOI 10.1090/S0002-9904-1969-12181-6
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. (3) 20 (1970), 749–768. MR 268388, DOI 10.1112/plms/s3-20.4.749
- Bent Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139–215. MR 117453, DOI 10.1007/BF02546356
- Ian Graham, The radial derivative, fractional integrals, and comparative growth of means of holomorphic functions on the unit ball in $\textbf {C}^{n}$, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 171–178. MR 627757
- G. H. Hardy and J. E. Littlewood, Some new properties of fourier constants, Math. Ann. 97 (1927), no. 1, 159–209. MR 1512359, DOI 10.1007/BF01447865
- G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. Oxford Ser. 12 (1941), 221–256. MR 6581, DOI 10.1093/qmath/os-12.1.221
- William W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237–241. MR 374886, DOI 10.1090/S0002-9939-1975-0374886-9
- Lars Hörmander, $L^{p}$ estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65–78. MR 234002, DOI 10.7146/math.scand.a-10821
- A. Korányi and S. Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 575–648 (1972). MR 463513
- Daniel Luecking, A technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), no. 4, 656–660. MR 687635, DOI 10.1090/S0002-9939-1983-0687635-6
- B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17–92. MR 199636, DOI 10.1090/S0002-9947-1965-0199636-9
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Francisco J. Ruiz and José L. Torrea, Vector-valued Calderón-Zygmund theory and Carleson measures on spaces of homogeneous nature, Studia Math. 88 (1988), no. 3, 221–243. MR 932011, DOI 10.4064/sm-88-3-221-243
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- M. H. Taibleson, Fourier analysis on local fields, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. MR 0487295
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 341 (1994), 841-862
- MSC: Primary 42B25; Secondary 30D55, 42B30
- DOI: https://doi.org/10.1090/S0002-9947-1994-1149122-2
- MathSciNet review: 1149122