Local asymptotic distribution of zeros of orthogonal polynomials
HTML articles powered by AMS MathViewer
- by Vilmos Totik and Joseph L. Ullman
- Trans. Amer. Math. Soc. 341 (1994), 881-894
- DOI: https://doi.org/10.1090/S0002-9947-1994-1150019-2
- PDF | Request permission
Abstract:
Converse results, which state a relation (inequality) for measures from that on their logarithmic potentials, are applied to local density of zeros of orthogonal polynomials when the measure of orthogonality is a general one with compact support. It will be shown that if the measure is sufficiently thick on a part of its support, then on that part the density of the zeros will be at least as large as the equilibrium measure of the support. A corresponding upper estimate on the distribution of the zeros will also be proved. All of our estimates are sharp, and they localize several well-known results.References
- A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions, Proc. Cambridge Philos. Soc. 41 (1945), 103–110. MR 12325, DOI 10.1017/s0305004100022453
- Marcel Brelot, Sur l’allure des fonctions harmoniques et sousharmoniques à la frontière, Math. Nachr. 4 (1951), 298–307 (French). MR 41989, DOI 10.1002/mana.3210040126 Ch. J. de la Vallée-Poussin: Le potentiel logarithmique, Gauthier-Villars, Paris, 1949. —, Potentiel et problème généralisé de Dirichlet, Math. Gaz. 22 (1938), 17-36.
- P. Erdős and G. Freud, On orthogonal polynomials with regularly distributed zeros, Proc. London Math. Soc. (3) 29 (1974), 521–537. MR 420119, DOI 10.1112/plms/s3-29.3.521
- Paul Erdös and Paul Turán, On interpolation. III. Interpolatory theory of polynomials, Ann. of Math. (2) 41 (1940), 510–553. MR 1999, DOI 10.2307/1968733 G. Freud, Orthogonal polynomials, Pergamon Press, Oxford, 1971. B. Fuglede, Some properties of the Riesz charge associated with a $\delta$-subharmonic function (manuscript).
- A. F. Grishin, Sets of regular growth of entire functions. I, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 40 (1983), 36–47 (Russian). MR 738442
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027
- Herbert Stahl and Vilmos Totik, General orthogonal polynomials, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992. MR 1163828, DOI 10.1017/CBO9780511759420
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- J. L. Ullman, On the regular behaviour of orthogonal polynomials, Proc. London Math. Soc. (3) 24 (1972), 119–148. MR 291718, DOI 10.1112/plms/s3-24.1.119
- Joseph L. Ullman, A survey of exterior asymptotics for orthogonal polynomials associated with a finite interval and a study of the case of the general weight measures, Approximation theory and spline functions (St. John’s, Nfld., 1983) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 136, Reidel, Dordrecht, 1984, pp. 467–478. MR 786861
- Joseph L. Ullman, Orthogonal polynomials for general measures. I, Rational approximation and interpolation (Tampa, Fla., 1983) Lecture Notes in Math., vol. 1105, Springer, Berlin, 1984, pp. 524–528. MR 783300, DOI 10.1007/BFb0072438
- Joseph L. Ullman, Orthogonal polynomials for general measures. II, Orthogonal polynomials and applications (Bar-le-Duc, 1984) Lecture Notes in Math., vol. 1171, Springer, Berlin, 1985, pp. 247–254. MR 838990, DOI 10.1007/BFb0076550
- Harold Widom, Polynomials associated with measures in the complex plane, J. Math. Mech. 16 (1967), 997–1013. MR 0209448 M. F. Wyneken, The potential theory of Borel sets and some applications to the study of orthogonal polynomials (to appear).
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 341 (1994), 881-894
- MSC: Primary 42C05; Secondary 26C10
- DOI: https://doi.org/10.1090/S0002-9947-1994-1150019-2
- MathSciNet review: 1150019