Operations on resolutions and the reverse Adams spectral sequence
HTML articles powered by AMS MathViewer
- by David A. Blanc
- Trans. Amer. Math. Soc. 342 (1994), 197-213
- DOI: https://doi.org/10.1090/S0002-9947-1994-1132432-2
- PDF | Request permission
Abstract:
We describe certain operations on resolutions in abelian categories, and apply them to calculate part of a reverse Adams spectral sequence, going "from homotopy to homology", for the space ${\mathbf {K}}(\mathbb {Z}/2,n)$. This calculation is then used to deduce that there is no space whose homotopy groups are the reduction $\bmod \; 2$ of ${\pi _\ast }{{\mathbf {S}}^r}$. As another application of the operations we give a short proof of T. Y. Lin’s theorem on the infinite projective dimension of all nonfree $\pi$-modules.References
- J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180–214. MR 96219, DOI 10.1007/BF02564578
- David A. Blanc, A Hurewicz spectral sequence for homology, Trans. Amer. Math. Soc. 318 (1990), no. 1, 335–354. MR 956029, DOI 10.1090/S0002-9947-1990-0956029-6
- David Blanc, Derived functors of graded algebras, J. Pure Appl. Algebra 64 (1990), no. 3, 239–262. MR 1061301, DOI 10.1016/0022-4049(90)90060-U —, Abelian $\Pi$-algebras and their projective dimension, Algebraic Topology—Oaxtepec 1991 (M. C. Tangora, ed.), Contemp. Math., vol. 146, Amer. Math. Soc., Providence, R.I., 1993, pp. 39-48. —, Higher homotopy operations and the realizability of homotopy groups, Proc. London Math. Soc. (to appear).
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée. MR 0345092
- T. Y. Lin, Homological algebra of stable homotopy ring $\pi _{^{\ast } }$ of spheres, Pacific J. Math. 38 (1971), 117–143. MR 307233
- T. Y. Lin, Homological dimensions of stable homotopy modules and their geometric characterizations, Trans. Amer. Math. Soc. 172 (1972), 473–490 (1973). MR 380789, DOI 10.1090/S0002-9947-1972-0380789-8
- R. M. F. Moss, On the composition pairing of Adams spectral sequences, Proc. London Math. Soc. (3) 18 (1968), 179–192. MR 220294, DOI 10.1112/plms/s3-18.1.179
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
- Christopher R. Stover, A van Kampen spectral sequence for higher homotopy groups, Topology 29 (1990), no. 1, 9–26. MR 1046622, DOI 10.1016/0040-9383(90)90022-C
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 197-213
- MSC: Primary 55T15; Secondary 18G10
- DOI: https://doi.org/10.1090/S0002-9947-1994-1132432-2
- MathSciNet review: 1132432