## Operations on resolutions and the reverse Adams spectral sequence

HTML articles powered by AMS MathViewer

- by David A. Blanc PDF
- Trans. Amer. Math. Soc.
**342**(1994), 197-213 Request permission

## Abstract:

We describe certain operations on resolutions in abelian categories, and apply them to calculate part of a reverse Adams spectral sequence, going "from homotopy to homology", for the space ${\mathbf {K}}(\mathbb {Z}/2,n)$. This calculation is then used to deduce that there is no space whose homotopy groups are the reduction $\bmod \; 2$ of ${\pi _\ast }{{\mathbf {S}}^r}$. As another application of the operations we give a short proof of T. Y. Linâ€™s theorem on the infinite projective dimension of all nonfree $\pi$-modules.## References

- J. F. Adams,
*On the structure and applications of the Steenrod algebra*, Comment. Math. Helv.**32**(1958), 180â€“214. MR**96219**, DOI 10.1007/BF02564578 - David A. Blanc,
*A Hurewicz spectral sequence for homology*, Trans. Amer. Math. Soc.**318**(1990), no.Â 1, 335â€“354. MR**956029**, DOI 10.1090/S0002-9947-1990-0956029-6 - David Blanc,
*Derived functors of graded algebras*, J. Pure Appl. Algebra**64**(1990), no.Â 3, 239â€“262. MR**1061301**, DOI 10.1016/0022-4049(90)90060-U
â€”, - Roger Godement,
*Topologie algĂ©brique et thĂ©orie des faisceaux*, Publications de lâ€™Institut de MathĂ©matique de lâ€™UniversitĂ© de Strasbourg, XIII, Hermann, Paris, 1973 (French). TroisiĂ¨me Ă©dition revue et corrigĂ©e. MR**0345092** - T. Y. Lin,
*Homological algebra of stable homotopy ring $\pi _{^{\ast } }$ of spheres*, Pacific J. Math.**38**(1971), 117â€“143. MR**307233** - T. Y. Lin,
*Homological dimensions of stable homotopy modules and their geometric characterizations*, Trans. Amer. Math. Soc.**172**(1972), 473â€“490 (1973). MR**380789**, DOI 10.1090/S0002-9947-1972-0380789-8 - R. M. F. Moss,
*On the composition pairing of Adams spectral sequences*, Proc. London Math. Soc. (3)**18**(1968), 179â€“192. MR**220294**, DOI 10.1112/plms/s3-18.1.179 - Hirosi Toda,
*Composition methods in homotopy groups of spheres*, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR**0143217** - Christopher R. Stover,
*A van Kampen spectral sequence for higher homotopy groups*, Topology**29**(1990), no.Â 1, 9â€“26. MR**1046622**, DOI 10.1016/0040-9383(90)90022-C - George W. Whitehead,
*Elements of homotopy theory*, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR**516508**

*Abelian*$\Pi$-

*algebras and their projective dimension*, Algebraic Topologyâ€”Oaxtepec 1991 (M. C. Tangora, ed.), Contemp. Math., vol. 146, Amer. Math. Soc., Providence, R.I., 1993, pp. 39-48. â€”,

*Higher homotopy operations and the realizability of homotopy groups*, Proc. London Math. Soc. (to appear).

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**342**(1994), 197-213 - MSC: Primary 55T15; Secondary 18G10
- DOI: https://doi.org/10.1090/S0002-9947-1994-1132432-2
- MathSciNet review: 1132432