Weights for classical groups
HTML articles powered by AMS MathViewer
- by Jian Bei An
- Trans. Amer. Math. Soc. 342 (1994), 1-42
- DOI: https://doi.org/10.1090/S0002-9947-1994-1136543-7
- PDF | Request permission
Abstract:
This paper proves the Alperin’s weight conjecture for the finite unitary groups when the characteristic r of modular representation is odd. Moreover, this paper proves the conjecture for finite odd dimensional special orthogonal groups and gives a combinatorial way to count the number of weights, block by block, for finite symplectic and even dimensional special orthogonal groups when r and the defining characteristic of the groups are odd.References
- J. L. Alperin, Large Abelian subgroups of $p$-groups, Trans. Amer. Math. Soc. 117 (1965), 10–20. MR 170946, DOI 10.1090/S0002-9947-1965-0170946-4
- J. L. Alperin, Weights for finite groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 369–379. MR 933373, DOI 10.1090/pspum/047.1/933373
- J. L. Alperin and P. Fong, Weights for symmetric and general linear groups, J. Algebra 131 (1990), no. 1, 2–22. MR 1054996, DOI 10.1016/0021-8693(90)90163-I
- Jian Bei An, $2$-weights for general linear groups, J. Algebra 149 (1992), no. 2, 500–527. MR 1172443, DOI 10.1016/0021-8693(92)90030-P
- Jian Bei An, $2$-weights for unitary groups, Trans. Amer. Math. Soc. 339 (1993), no. 1, 251–278. MR 1108609, DOI 10.1090/S0002-9947-1993-1108609-8 R. Brauer, On blocks and sections. I, II, Amer. J. Math. 89 (1967), 1115-1136; 90 (1968), 895-925.
- Michel Broué, Les $l$-blocs des groups $\textrm {GL}(n,q)$ et $\textrm {U}(n,q^2)$ et leurs structures locales, Astérisque 133-134 (1986), 159–188 (French). Seminar Bourbaki, Vol. 1984/85. MR 837219
- Michel Broué and Jean Michel, Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math. 395 (1989), 56–67 (French). MR 983059, DOI 10.1515/crll.1989.395.56
- François Digne and Jean Michel, Foncteurs de Lusztig et caractères des groupes linéaires et unitaires sur un corps fini, J. Algebra 107 (1987), no. 1, 217–255 (French). MR 883883, DOI 10.1016/0021-8693(87)90087-1
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- Paul Fong and Bhama Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69 (1982), no. 1, 109–153. MR 671655, DOI 10.1007/BF01389188
- Paul Fong and Bhama Srinivasan, The blocks of finite classical groups, J. Reine Angew. Math. 396 (1989), 122–191. MR 988550
- Meinolf Geck and Gerhard Hiss, Basic sets of Brauer characters of finite groups of Lie type, J. Reine Angew. Math. 418 (1991), 173–188. MR 1111205
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Robert L. Griess Jr., Automorphisms of extra special groups and nonvanishing degree $2$ cohomology, Pacific J. Math. 48 (1973), 403–422. MR 476878
- I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594–635. MR 332945, DOI 10.2307/2373731
- Adalbert Kerber, Representations of permutation groups. I, Lecture Notes in Mathematics, Vol. 240, Springer-Verlag, Berlin-New York, 1971. MR 0325752
- G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125–175. MR 463275, DOI 10.1007/BF01390002
- J. B. Olsson, Remarks on symbols, hooks and degrees of unipotent characters, J. Combin. Theory Ser. A 42 (1986), no. 2, 223–238. MR 847553, DOI 10.1016/0097-3165(86)90093-2
- David L. Winter, The automorphism group of an extraspecial $p$-group, Rocky Mountain J. Math. 2 (1972), no. 2, 159–168. MR 297859, DOI 10.1216/RMJ-1972-2-2-159
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 1-42
- MSC: Primary 20C20; Secondary 20G05
- DOI: https://doi.org/10.1090/S0002-9947-1994-1136543-7
- MathSciNet review: 1136543