WEIGHTS FOR CLASSICAL GROUPS

JIANBEI AN

Abstract. This paper proves the Alperin's weight conjecture for the finite unitary groups when the characteristic \(r \) of modular representation is odd. Moreover, this paper proves the conjecture for finite odd dimensional special orthogonal groups and gives a combinatorial way to count the number of weights, block by block, for finite symplectic and even dimensional special orthogonal groups when \(r \) and the defining characteristic of the groups are odd.

Introduction

Let \(G \) be a finite group and \(r \) a prime. A weight of \(G \) is a pair \((R, \varphi)\) of an \(r \)-subgroup \(R \) of \(G \) and an irreducible character \(\varphi \) of \(N(R) \) such that \(\varphi \) is trivial on \(R \) and in an \(r \)-block of defect 0 of \(N(R)/R \), where \(N(R) = N_G(R) \) is the normalizer of \(R \) in \(G \). A radical subgroup \(R \) of \(G \) is an \(r \)-subgroup of \(G \) such that \(R = O_r(N(R)) \), where \(O_r(N(R)) \) is the largest normal \(r \)-subgroup of \(N(R) \). If \((R, \varphi)\) is a weight of \(G \), then \(R \) is necessarily a radical subgroup of \(G \). A weight \((R, \varphi)\) is a \(B \)-weight for an \(r \)-block \(B \) of \(G \) if \(\varphi \) is contained in an \(r \)-block \(b \) of \(N(R) \) such that \(B = b^G \), that is, \(B \) corresponds to \(b \) by the Brauer homomorphism. In his paper [2], Alperin introduced the concept of weight in the modular representation theory of finite groups and conjectured that the number of weights of \(G \) should equal the number of modular irreducible representations. Moreover, this equality should hold block by block. Here a weight \((R, \varphi)\) is identified with its conjugates in \(G \). Alperin and Fong in [3] have proved this conjecture for symmetric groups and for finite general linear groups when the characteristic \(r \) of modular representation is odd. The author in [4, 5] proved the conjecture for finite general linear and unitary groups when \(r \) is even. In this paper, we prove the conjecture for the finite unitary groups when \(r \) is odd. Moreover, we prove the conjecture for odd dimensional special orthogonal groups and give a combinatorial way to count the number of weights, block by block, for both finite symplectic and even dimensional special orthogonal groups when \(r \) and the defining characteristic \(p \) of groups are odd. We may suppose \(p \) is different from \(r \) since the result is known when \(p \) is \(r \) (see [2]).

In the first two sections, we describe the local structures of radical subgroups of a finite classical group, and in §3 we count the number of weights when the center of a radical subgroup is cyclic. The conjecture has been proved for unitary groups in (4D) and for odd dimensional special orthogonal groups in
JIANBEI AN

2

(4G) and its remarks. Finally, the numbers of weights for symplectic and even dimensional special orthogonal groups have been counted in (4F) and (4H) respectively.

I wish to express my sincere thanks to Professor Paul Fong, my Ph.D. advisor, for many corrections and suggestions. I also wish to thank Professor Bhama Srinivasan for a lot of help.

1. THE GROUPS OF SYMPLECTIC TYPE

Throughout this paper we shall follow the notation of [3, 5, 7], and [12]. In particular, \(r \) is an odd prime and \(E \) is an extraspecial \(r \)-group of order \(r^{2y+1} \) with center \(Z(E) = \langle y \rangle \). Then \(E = \langle x_1, x_2, \ldots, x_{2y-1}, x_{2y} \rangle \) such that \([x_{2i-1}, x_{2i}] = x_{2i-1}^{-1}x_{2i}^{-1}x_{2i-1}x_{2i} = y, [x_{2i}, x_{2i+1}] = 1 \), for \(1 \leq i \leq y \), \([x_i, x_j] = 1 \) for \(|i - j| \geq 2 \), \(x_i^r = 1 \) for \(i \neq 2 \). Thus \(E \) has exponent \(r \) or \(r^2 \) according as \(x_i^r = 1 \) or \(y \). An \(r \)-group \(R \) is of symplectic type if \(R \) is a central product of a nontrivial cyclic \(r \)-group \(Z \) and an extraspecial group \(E \), where \(Z(E) \) is identified with \(E\langle x \rangle \). If \(R > E \), then \(R \) can be rewritten as the central product of \(Z \) and an extraspecial group of exponent \(r \), so that we may suppose \(E \) has exponent \(r \) and \(E = \langle x \rangle \). Let \(\text{Aut} \, R \) be the automorphism group of \(R \), \(\text{Inn} \, R \) the group of inner automorphisms, and \(\text{Aut}^0R = \{ \sigma \in \text{Aut} \, R : [\sigma, Z] = 1 \} \). Since every \(\sigma \) in \(\text{Aut}^0 \, R \) restricts to an element \(\text{Aut}^0 \, E \) and every \(\sigma \) in \(\text{Aut}^0 \, E \) extends to an element of \(\text{Aut} \, R \), it follows that \(\text{Aut}^0 \, R = \text{Aut}^0 \, E \). Denote

\[
K = \begin{cases}
\text{Sp}(2y, r) & \text{if } E \text{ has exponent } r, \\
\text{Sp}(2y - 2, r) \rtimes r^{2(\gamma - 1) + 1} & \text{if } E \text{ has exponent } r^2,
\end{cases}
\]

where \(r^{2(\gamma - 1) + 1} \) denotes the extraspecial group of order \(2(\gamma - 1) + 1 \) and exponent \(r \), and \(\text{Sp}(0, r) \rtimes r^1 \) is interpreted as a group of order \(r \). By [20, Theorem 1 or 15, p. 404] \(\text{Aut}^0 \, E = K \rtimes \text{Inn} \, E \) (see also [3, p. 10]). In the following we shall consider the embeddings of \(R \) into classical groups and determine the local structures of these embeddings.

Let \(\mathbb{F}_q \) be the field of \(q \) elements and \(\eta = \pm 1 \) a sign, where \(q \) is a power of prime \(p \) distinct from \(r \). We first consider the embedding of \(E \) in the groups \(G = \text{GL}(n, \eta q) \). Here following [7], we denote \(\text{U}(n, q) \) by \(\text{GL}(n, -q) \). The proofs of the following two lemmas are similar to that of [5, (1D), (1E), and (1F)] and in the proofs such terms as orthogonal, orthonormal, and isometric will have meaning only in contexts involving \(\text{U}(n, q) \) and unitary spaces, but no meaning in contexts involving \(\text{GL}(n, q) \) and linear spaces.

(1A). Let \(E \) be an extraspecial group of order \(r^{2\gamma + 1} \) and \(G = \text{GL}(r^\gamma, \eta q) \). If \(r \) divides \(q - \eta \) (written \(r \mid q - \eta \)), then \(G \) contains a unique conjugacy class of subgroups isomorphic to \(E \). Moreover, if \(r \mid q - 1 \), then \(\mathbb{F}_q \) is a splitting field of \(E \).

Proof. Given \(1 \leq i \leq \gamma \), let \(E_i = \langle x_{2i-1}, x_{2i} \rangle \), and \(V_i \) a linear space of dimension \(r \) over \(\mathbb{F}_q \) or a unitary space of dimension \(r \) over \(\mathbb{F}_{q^2} \) according as \(\eta = 1 \) or \(-1 \). Then \(E_i \) acts faithfully, irreducibly, and isometrically on \(V_i \). Namely, let \(w \) be an \(r \)th root of unity in \(\mathbb{F}_{q^2} \) and \(\{v_1^i, v_2^i, \ldots, v_{r^\gamma}^i\} \) an orthonormal basis of \(V_i \). If \(E \) has exponent \(r \), then define

\[
(1.2) \quad x_{2i-1}: v_j^i \mapsto w^j v_j^i, \quad x_{2i}: v_j^i \mapsto v_{j+1}^i,
\]
where $1 \leq j \leq r$. If E has exponent r^2, then define

$$x_{2i-1}: v_j^i \mapsto w^iv_j^i, \quad x_{2i}: v_j^i \mapsto \begin{cases} \quad wv_j^i & \text{if } i = 1 \text{ and } j = r, \\ v_{j+1}^i & \text{otherwise,} \end{cases}$$

where $1 \leq j \leq r$. Here subscripts on basis vectors are naturally read modulo r. In particular, $y: v_j^i \mapsto uv_j^i$ for all j.

Since E is the central product of the E_i's and the element y in $Z(E_i)$ is represented on V_i by the scalar matrix wI, E acts faithfully and irreducibly on $V = V_1 \otimes V_2 \otimes \cdots \otimes V_r$. To see that the actions are by isometries, we first simplify notation and write

$$v_j^1 \otimes v_j^2 \otimes \cdots \otimes v_j^r = [j_1, j_2, \ldots, j_r], \quad 1 \leq j_i \leq r.$$

The r^r elements $[j_1, j_2, \ldots, j_r]$ form an orthonormal basis for V. So

$$x_{2i-1}: [j_1, j_2, \ldots, j_r] \mapsto w^2[j_1, j_2, \ldots, j_r],$$

$$x_{2i}: [j_1, j_2, \ldots, j_r] \mapsto [j_1, \ldots, j_i, j_i+1, j_i+1, \ldots, j_r],$$

except when E has exponent r^2, in which case the actions of x_i for $i \neq 2$ are given by (1.4) and

$$x_2: [j_1, j_2, \ldots, j_r] \mapsto \begin{cases} [j_1 + 1, j_2, \ldots, j_r] & \text{if } j_1 \neq r, \\ w[1, j_2, \ldots, j_r] & \text{if } j_1 = r. \end{cases}$$

Since basic vectors are mapped onto orthonormal vectors by generating elements of E, E acts on V by isometries, so that G contains a copy of E.

Suppose $r|q - 1$. Replacing w by w^k for $1 \leq k < r$ in the proof above, we get $r - 1$ faithful and irreducible representations of E. By [14, 5.5.4] E has $r - 1$ nonlinear characters and all linear characters are realizable over \mathbb{F}_q since $E/Z(E)$ is an elementary abelian r-group. Thus \mathbb{F}_q is a splitting field of E.

To prove the uniqueness, it suffices to show that if E is embedded as a subgroup of G, then there exists an orthonormal basis of the underlying space V such that (1.4) or (1.5) holds according as E has exponent r or r^2. By Schur's lemma $y = w^kI$ for some integer $1 \leq k < r$. We may suppose $y = wI$ since $E = (x_1, x_2^k, x_3, x_4^k, \ldots, x_{2r-1}, x_{2r}^k)$ and $[x_{2i-1}, x_{2i}^k] = y^k$.

Let $W_j = \{v \in V: x_1v = w^jv\}$ for $1 \leq j \leq r$. Then V is the orthogonal sum of the W_j, so the W_j for $1 \leq j \leq r$ are nondegenerate subspaces of V and they are permuted by x_2 cyclically

$$x_2W_1 = W_2, \quad x_2^2W_1 = W_3, \ldots, x_2^rW_1 = W_1,$$

since $x_1x_2 = wx_2x_1$. In particular, W_j for $1 \leq j \leq r$ have the same dimension.

If $\gamma = 1$ and $\{v_1\}$ is an orthonormal basis of W_1, then $\{v_1, x_2v_1, \ldots, x_2^{r-1}v_1\}$ is an orthonormal basis of V and the actions of x_1 and x_2 on the basis are given by (1.2) or (1.3) according as E has exponent r or r^2. If $\gamma \geq 2$, then $L = (x_3, x_4, \ldots, x_{2r})$ is an extraspecial group of order $r^{2\gamma - 1}$ and exponent r acting faithfully on W_1. We may suppose by induction that x_3, x_4, \ldots, x_{2r} act on W_1 by (1.4) relative to the orthonormal basis $\{[j_2, j_3, \ldots, j_r]\}$ of W_1, where $1 \leq j_i \leq r$. Thus $\{[j_2, j_3, \ldots, j_r] = x_2^{j_i-1}[j_2, \ldots, j_r]: 1 \leq j_i \leq r\}$ is an orthonormal basis of V and x_1, x_2, \ldots, x_{2r} act on the basis by (1.4) or (1.5). Thus any two embeddings of E in G are conjugate.
Remark. (1) Suppose \(r|q - \eta \) and \(E \) is embedded in \(G = GL(n, \eta q) \) as a subgroup such that \(y \) is represented by a scalar multiple of the identity matrix. Then \(n = m\tau \) for some integer \(m \geq 1 \), and there exists an orthonormal basis \(\{ [j_1, j_2, \ldots, j_r]_k \} \) of the underlying space \(V \) of \(G \), where \(1 \leq j_i \leq r \) and \(1 \leq k \leq m \) such that for each \(k \) the actions of \(x_{2i-1} \) and \(x_{2i} \) are given by (1.4) or (1.5) with \([j_1, j_2, \ldots, j_r] \) replaced by \([j_1, j_2, \ldots, j_r]_k \). In particular, by (1A) such embedding of \(E \) in \(G \) is uniquely determined up to conjugacy in \(G \). The proof of the remark is similar to that of the uniqueness of (1A) and Remark (2) of [5, (1D)].

(2) Suppose \(r|q - \eta \), \(E \) has exponent \(r \), and \(E \) is embedded in \(GL(r^n, \eta q) \) as a subgroup. In the notation of (1A), we claim that \(V \) has an orthonormal basis \(\{ [j_1, j_2, \ldots, j_r]' \} \), where \(1 \leq j_i \leq r \) such that the actions of \(x_{2i-1} \) and \(x_{2i} \) for \(i \geq 2 \) are given by (1.4) with \([j_1, j_2, \ldots, j_r] \) replaced by \([j_1, j_2, \ldots, j_r]' \), and

\[
\begin{align*}
x_1 & : [j_1, j_2, \ldots, j_r]' \mapsto [j_1 + 1, j_2, \ldots, j_r]', \\
x_2 & : [j_1, j_2, \ldots, j_r]' \mapsto w^{-j_1}[j_1, j_2, \ldots, j_r]').
\end{align*}
\]

Indeed let \(V_j' = \{ v \in V : x_j v = w^{-j} v \} \) for \(1 \leq j \leq r \). Then \(V_j' \) are non-degenerate subspaces permuted by \(x_1 \) cyclically. If \(\gamma = 1 \) and \(\{ v_1 \} \) is an orthonormal basis of \(V_1' \), then \(\{ [j_1]' = x_1^{j_1-1}v_1 \} \), where \(1 \leq j_1 \leq r \), is a required basis. Suppose \(\gamma \geq 2 \) and \(\{ [j_2, j_3, \ldots, j_r]' \} \), where \(1 \leq j_i \leq r \), is an orthonormal basis of \(V_1' \) such that the actions of \(x_3, \ldots, x_{2r} \) on the basis are given by (1.4) with \([j_2, j_3, \ldots, j_r] \) replaced by \([j_2, j_3, \ldots, j_r]' \). Let \([j_1, j_2, \ldots, j_r]' = x_1^{j_1-1}[j_2, \ldots, j_r]' \). Then \(\{ [j_1, j_2, \ldots, j_r]' : 1 \leq j_i \leq r \} \) is a required basis.

(1B). Suppose \(r|q - \eta \). Let \(G = GL(r^n, \eta q) \) and \(R = Z \) be an \(r \)-subgroup of symplectic type of \(G \), where \(Z = Z(G) \) and \(E \) is an extraspecial subgroup of order \(r^{2r+1} \) of \(G \). Set \(C = C_G(R) \) and \(N = N_G(R) \). Then \(C = Z(G) = Z(N) \) and if \(E \) has exponent \(r \), then \(N/RC \cong Sp(2\gamma, q) \). In addition, if \(R \) is radical in \(G \), then \(E \) has exponent \(r \). Moreover, each linear character of \(Z(N) \) acting trivially on \(O_r(Z(N)) \) has an extension to \(N \) trivial on \(R \).

Proof. By (1A) \(\mathbb{F}_q^2 \) is a splitting field, so that \(C = Z(G) = Z(N) \). The proof of the last assertion is the same as that of [5, (1E)] with 2 replaced by \(r \). If \(R > E \), then \(E \) may be assumed to have exponent \(r \). The elements of \(N \) induce automorphisms in \(Aut^0 E = Aut^0 R \). Suppose \(E \) has exponent \(r \) and acts on the underlying space \(V \) of \(G \) by (1.4). We shall exhibit elements in \(N \) which together with \(R \) generate \(Aut^0 E \).

(1) Let \(g \) be the element in \(G \) such that

\[
g : [j_1, j_2, \ldots, j_i, \ldots, j_r] \mapsto [j_1, j_2, \ldots, j_i, \ldots, j_r] \cdot
\]

Then \(g^{-1}x_1g = x_{2i-1} \), \(g^{-1}x_2g = x_1 \), \(g^{-1}x_2g = x_{2i} \), \(g^{-1}x_2g = x_2 \), and \(g^{-1}x_kg = x_k \) for all other indices. Thus \(N \) contains a subgroup inducing the symmetric group \(S(\gamma) \) on the set \(\{ E_1, E_2, \ldots, E_r \} \).

(2) Let \(\{ [j_1, j_2, j_3, \ldots, j_r]' \} \) be the orthonormal basis of \(V \) given by Remark (2), and \(g \) the element in \(G \) such that

\[
g : [j_1, j_2, \ldots, j_r]' \mapsto [j_1, j_2, \ldots, j_r] \cdot
\]

Then \(g^{-1}x_1g = x_2^{-1} \), \(g^{-1}x_2g = x_1 \), and \(g^{-1}x_kg = x_k \) for \(k \geq 3 \). By (1) for each \(1 \leq i \leq \gamma \), there exists \(h \in G \) such that \(h^{-1}x_{2i-1}h = x_{2i}^{-1} \),
Let g be the element in G such that

$$g: [j_1, j_2, j_3, \ldots, j_\gamma] \mapsto [\lambda j_1, j_2, j_3, \ldots, j_\gamma],$$

where λ is a nonzero element of \mathbb{Z}/\mathbb{Z}. Then $g^{-1}x_1g = x_1^\lambda$, $g^{-1}x_2g = x_2^{\lambda^{-1}}$, and $g^{-1}x_kg = x_k$ for $k > 2$. In addition, let g be the element in G such that

$$(1.6) \quad g: [j_1, j_2, j_3, \ldots, j_\gamma] \mapsto [j_1 + j_2, j_2, j_3, \ldots, j_\gamma].$$

Then $g^{-1}x_1g = x_1x_3$, $g^{-1}x_4g = x_4x_2^{-1}$, and $g^{-1}x_kg = x_k$ for all other indices. Since $(x_1, x_3, \ldots, x_{2\gamma-1})$ and $(x_2, x_4, \ldots, x_{2\gamma})$ give a hyperbolic decomposition of $R/\mathbb{Z}(R)$, the element g of (1.6) induces

$$\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)$$

$$\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)$$

relative to this decomposition of $R/\mathbb{Z}(R)$. By (1) we may replace E_1 and E_2 by E_1 and E_γ for $1 \leq i \neq \gamma \leq \gamma$. Thus N contains a subgroup inducing

$$\left\langle \left(\begin{array}{c}
A \\
(A^{-1})^t
\end{array}\right) : A \in \text{GL}(\gamma, r) \right\rangle$$
on $R/\mathbb{Z}(R)$.

(4) We claim there are elements in N inducing

$$\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right)$$
on $R/\mathbb{Z}(R)$ for any X such that $X^t = X$. By (3) it suffices to show this when $X = \text{diag}(1, 0, 0, \ldots, 0)$. Indeed, let g be the element in G such that

$$(1.7) \quad g: [j_1, j_2, \ldots, j_\gamma] \mapsto w^{(j_1+1)/2} [j_1, j_2, \ldots, j_\gamma],$$

where w is the rth root of unity in \mathbb{F}_{q^2} given by (1.4). Then $g^{-1}x_2g = x_1x_2$, and $g^{-1}x_kg = x_k$ for all other indices. Thus the claim holds.

By (3) and (4) N contains a subgroup inducing a Borel subgroup of $\text{Sp}(2\gamma, r)$ on $R/\mathbb{Z}(R)$. Thus N induces $\text{Sp}(2\gamma, r)$ on $R/\mathbb{Z}(R)$. Suppose R is radical in G. If E has exponent r^2, then $R = E$ and the element g defined by (1.7) lies in $N \setminus R$. Moreover, as shown in the proof of [20, p. 166], g induces an element of $Z(K)$, where $K \simeq \text{Aut}^0 E/\text{Inn} E$ is given by (1.1). Let $Q = (g, E)$, so that $Q \leq N$. We claim that $Q \leq O_r(N)$. Indeed for any $h \in N$, h induces an element of $\text{Aut}^0 E$. Replacing h by hx for some $x \in E$, we may suppose h induces an element of K. Thus $[h, g]$ induces a trivial action on E and then $[h, g] \in C = Z(G)$, so that $hgh^{-1} = zg$ for some $z \in C$ and $z \in O_r(C) = Z(R)$ since zg and g are r-elements. So h normalizes Q and
the claim holds. It follows that \(R \) is nonradical in \(G \) and we may suppose \(E \) has exponent \(r \). This proves (1B).

We now consider the embedding of \(R \) into finite classical groups. Let \(G = \text{U}(n, q), \text{Sp}(2n, q), \text{O}(2n+1, q), \) or \(\text{O}^*(2n, q) \), and let \(V \) be the underlying space of \(G \), where \(\eta = \pm 1 \). If \(V \) is a symplectic or orthogonal space, we always suppose the characteristic \(p \) of \(F^q \) is odd. Moreover, we denote by \(I(V) \) the group of isometries of \(V \), \(I_0(V) \) the subgroups of \(I(V) \) of determinant 1, and \(\eta(V) \) the type of \(V \) if \(V \) is orthogonal. For simplicity, we set \(\eta(V) = 1 \) if \(V \) is symplectic.

We define the integers \(e, a, \) and \(\text{sign } e = \pm 1 \) as follows: In the case \(G = \text{U}(n, q) \), let \(e \) be the order of \(-q\) modulo \(r \) and \(e = 1 \) or \(-1\) according as \(e \) is even or odd; in the remaining cases, let \(e \) be the order of \(q^2 \) modulo \(r \) and \(e \) the sign chosen so that \(r^a \) divides \(q^e - 1 \). In all cases, let \(r^a \) be the exact power of \(r \) dividing \(q^{2e} - 1 \). In the case \(G = \text{U}(n, q) \), our definition of \(e \) above is different from that of \cite[p. 125]{11}. In fact, if \(r | q^e + 1 \), then our \(e \) is the same as that of \[11]. If \(r | q^e - 1 \), then our \(e \) is the double of that of \[11].

We recall that there exists a set \(\mathcal{F} \) of polynomials serving as elementary divisors for all semisimple elements of each of these groups. First suppose \(G = \text{U}(n, q) \). For each monic polynomial \(A(X) = X^m + a_{m-1}X^{m-1} + \cdots + a_1X + a_0 \) of \(\mathbb{F}_q[X] \) with nonzero roots, let \(\tilde{A}(X) = (a_0^{-1})^q X^m \Delta^q(X) \). Then define

\[
\mathcal{F} = \{ A: A \text{ is monic, irreducible, } \Delta \neq X, \ \Delta = \tilde{\Delta} \},
\]

and \(\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \). Suppose \(G \) is a symplectic or orthogonal group. For each monic polynomial \(A(X) \) in \(\mathbb{F}_q[X] \) with nonzero roots, let \(\tilde{A}(X) \) be the monic polynomial in \(\mathbb{F}_q[X] \) whose roots are the inverses of the roots of \(A(X) \). Define

\[
\tilde{A}(X) = (a_0^{-1})^q X^m \Delta^q(X) - 1.
\]

In all cases, let \(a \) be the degree of \(\Delta(X) \) and \(\Delta(X) \) be the monic polynomial in \(\mathbb{F}_q[X] \) whose roots are the inverses of the roots of \(\Delta(X) \). Define

\[
\mathcal{F} = \{ X - 1, X + 1 \},
\]

\[
\mathcal{F}_1 = \{ \Delta: \Delta \text{ is monic, irreducible, } \Delta \neq X, \ \Delta \neq X \pm 1, \ \text{and } \Delta = \Delta^* \},
\]

and \(\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \). Given \(\Gamma \in \mathcal{F} \), denote \(d_\Gamma \) its degree and \(\delta_\Gamma \) its reduced degree defined by

\[
d_\Gamma = \begin{cases} d_\Gamma & \text{if } G = \text{U}(n, q) \text{ and } \Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2, \\ d_\Gamma & \text{if } G \neq \text{U}(n, q) \text{ and } \Gamma \in \mathcal{F}_0, \\ \frac{1}{2}d_\Gamma & \text{if } G \neq \text{U}(n, q) \text{ and } \Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2. \end{cases}
\]

Thus \(\delta_\Gamma \) is an integer. We define a sign \(\varepsilon_\Gamma \) for \(\Gamma \in \mathcal{F} \) by

\[
\varepsilon_\Gamma = \begin{cases} \varepsilon & \text{if } \Gamma \in \mathcal{F}_0, \\ -1 & \text{if } \Gamma \in \mathcal{F}_1, \\ 1 & \text{if } \Gamma \in \mathcal{F}_2. \end{cases}
\]

Given a semisimple element \(s \in G \), there exists a unique orthogonal decomposition

\[
(1.8) \quad V = \sum_\Gamma V_\Gamma(s), \quad s = \prod_\Gamma s(\Gamma),
\]
where the $V_{r}(s)$ are nondegenerate subspaces of V, $s(\Gamma) \in U(V_{r}(s))$ or $I(V_{r}(s))$ according as V is or is not a unitary space, and $s(\Gamma)$ has minimal polynomial $\Gamma \in \mathcal{F}$. The decomposition (1.8) will be called the primary decomposition of s in G. Let $m_{r}(s)$ be the multiplicity of Γ in $s(\Gamma)$. Then

\begin{equation}
C_{G}(s) = \prod_{r} C_{r}(s) ,
\end{equation}

where $C_{r}(s) = C_{U(V_{r}(s))(s(\Gamma))}$ or $C_{I(V_{r}(s))(s(\Gamma))}$. Moreover, by [11, (1A)] or [12, (1.13)]

\begin{equation}
C_{r}(s) = \begin{cases}
I(V_{r}(s)) & \text{if } \Gamma \in \mathcal{F}_{0}, \\
\text{GL}(m_{r}(s), \varepsilon_{r}q^{\delta_{r}}) & \text{if } \Gamma \in \mathcal{F}_{1} \cup \mathcal{F}_{2}.
\end{cases}
\end{equation}

A semisimple element $s \in G$ is primary if $s = s(\Gamma)$.

Suppose V is a symplectic or orthogonal space and s decomposes as (1.8). Let $\eta_{r}(s)$ be the type of $V_{r}(s)$, where $\eta_{r}(s) = 1$ for all $\Gamma \in \mathcal{F}$ if V is symplectic. So s lies in $I_{0}(V)$ if and only if $m_{x+1}(s)$ is even. By [12, (1.12)], the multiplicity and type functions $\Gamma \mapsto m_{r}(s)$, $\Gamma \mapsto \eta_{r}(s)$ satisfy the following relations

\begin{equation}
\dim V = \sum_{r} d_{r} m_{r}(s) ,
\end{equation}

\begin{equation}
\eta(V) = (-1)^{(q-1)/2m_{x-1}(s)m_{x+1}(s)} \prod_{r} \eta_{r}(s) ,
\end{equation}

\begin{equation}
\eta(V_{r}(s)) = \varepsilon_{r}^{m_{r}(s)} \text{ for } \Gamma \in \mathcal{F}_{1} \cup \mathcal{F}_{2} , \text{ and } V \text{ orthogonal}.
\end{equation}

Conversely, if $\Gamma \mapsto \eta_{r}$, $\Gamma \mapsto \eta_{r}$ are functions from \mathcal{F} to \mathbb{N}, $\{\pm 1\}$ respectively satisfying (1.11) with $m_{r}(s)$ and $\eta_{r}(s)$ replaced by η_{r} and η_{r}, then there exists a semisimple element s of $I(V)$ with those functions as multiplicity and type functions. Moreover, two semisimple elements s and s' of $I(V)$ are conjugate in $I(V)$ if and only if $m_{r}(s) = m_{r}(s')$ and $\eta_{r}(s) = \eta_{r}(s')$.

Let $Z = \langle z \rangle$ be a cyclic r-group of order $r^{a+\alpha}$ with $\alpha \geq 0$, E an extraspecial r-group of order $r^{2\gamma+1}$, and $R = ZE$ a group of symplectic type with $Z(R) = Z$. Moreover, we may suppose E has exponent r if $R > E$.

(1C). Let $G = U(n,q)$, $Sp(2n,q)$, $O(2n+1,q)$, or $O^{0}(2n,q)$, where $q = \pm 1$. Suppose F and F' are two embeddings of R in G such that $F(z)$ and $F'(z)$ are primary elements of G. Then $n = m r^{a+\gamma}$ for some $m \geq 1$, $F(R)$ and $F'(R)$ are conjugate in G, and $\eta = \varepsilon^{m}$ if $G = O^{0}(2n,q)$. Identify R with $F(R)$ and let $C = C_{G}(R)$, $N = N_{G}(R)$, and $N_{0} = \{ g \in N : [g, Z] = 1 \}$. Then $C \simeq \text{GL}(m, \varepsilon q^{\sigma_{s}})$. Furthermore, suppose R is a radical subgroup of G.

(1) E has exponent r and $N_{0} = LC$, where $R \subseteq L$, $L \cap C = Z(C) = Z(C_{G}(z)) = Z(L)$, $L/RZ(L) \simeq \text{Sp}(2\gamma, r)$, and $[C, L] = 1$. Moreover, each linear character of $Z(L)$ acting trivially on $O_{r}(Z(L))$ can be extended as a character of L acting trivially on R.

(2) $N/N_{0} \simeq N_{G}(Z)/C_{G}(Z)$ is cyclic of order er^{a} or $2er^{a}$ according as $G = U(n, q) \text{ or } G \neq U(n, q)$.

Proof. Since both $Z(F(R))$ and $Z(F'(R))$ are cyclic groups of order $r^{a+\alpha}$ generated by primary elements $F(z)$ and $F'(z)$ respectively, they are conjugate in G, so that we may suppose $Z(F(R)) = Z(F'(R))$. Thus $F(E)$ and $F'(E)$
are subgroups of $C_G(F(z))$. Let $H = C_G(F(z))$ and Γ be the unique elementary divisor of $F(z)$. Then $H \cong \text{GL}(m\Gamma(F(z)), \text{eq} e^{re})$ and the two embeddings $F(E)$ and $F'(E)$ of E in H can be viewed as embeddings of E in $\text{GL}(m\Gamma(F(z)), \text{eq} e^{re})$ in which a generator y of $Z(E)$ is represented by scalar multiples of the identity matrix. It then follows by Remark (1) of (1A) that $F(E)$ and $F'(E)$ are conjugate in H and $m\Gamma(F(z)) = mr^r$ for some $m \geq 1$. So $F(R)$ and $F'(R)$ are conjugate in G, and $\eta = e^{m'r^r} = e^m$ if $G = O^n(2n, q)$.

Identify H with $\text{GL}(mr^r, \text{eq} e^{re})$. Let W be the faithful and irreducible representation of E in $\text{GL}(r^r, \text{eq} e^{re})$ given by (1A), and let $H\gamma$ be the normalizer of $W(E)$ in $\text{GL}(r^r, \text{eq} e^{re})$. Then the commuting algebras of $H\gamma$ and E on the underlying space of $\text{GL}(r^r, \text{eq} e^{re})$ are $\text{F}_q e^{re}$ or $\text{F}_q e^{re}$ according as $r = 1$ or -1. Moreover, if E has exponent r, then $H\gamma/Z(H\gamma) \cong \text{Aut}^0 E$. By Remark (1) of (1A) $F(E)$ in H can be viewed as an m-fold diagonal embedding of E into $\text{GL}(mr^r, \text{eq} e^{re})$ given by

$$(1.12) \quad \begin{pmatrix} g & & & \\ & g & & \\ & & \ddots & \\ & & & g \end{pmatrix}, \quad g \in W(E).$$

In particular, $C = C_H(F(R)) \cong \text{GL}(m, e^{re})$. Let L be the image of $L\gamma$ under (1.12), so that $F(R) \leq L$, $L \leq N^0 = N_H(F(R))$, $C_H(L) = C_H(E) = C$, and $[L, C] = 1$. Suppose $F(R)$ is radical in G and E has exponent r^2, so that $R = E$. As shown in the proof of (4) of (1B), there exists an r-element x of $L\gamma$ such that $x \notin W(E)$ and x induces an element of $Z(\text{Aut}^0 E/\text{Inn} E)$, so that the image w of x under (1.12) is an r-element of $L \setminus F(E)$. If $Q = \langle w, F(E) \rangle$, then $C_H(F(E)) = C_H(Q) = C$. Since $N^0 \leq N$ and $F(E)$ is radical in G, it follows that $F(E) = O_r(N^0)$ and each element of N^0 induces an element of $\text{Aut}^0 E$, so that w induces an element of $Z(\text{Aut}^0 E/\text{Inn} E)$. We claim $Q \leq O_r(N^0)$. Indeed for each $h \in N^0$, we may suppose h induces an element of $\text{Aut}^0 E/\text{Inn} E$ and then $[h, w]$ acts trivially on E, so that $[h, w] \in C$. Since h normalizes C and w commutes with C, $[h, w]$ commutes with C and $hwh^{-1} = gw$ for some $g \in Z(C) = Z(H)$. Since gw and w are commutative r-elements, g is an r-element of $Z(H)$, so that $g \in O_r(H) \leq F(E)$. Thus h normalizes Q and $Q \leq O_r(N^0)$. This is a contradiction and E has exponent r.

Identify R with $F(R)$. Since $L/Z(L) \cong \text{Aut}^0 R$ and N^0 induces a subgroup of $\text{Aut}^0 R$, it follows that $N^0 = LC$. Thus $Z(H) \leq Z(N^0) \leq Z(L)Z(C)$, $Z(L) \leq Z(C) = Z(H)$, and $L \cap C \leq Z(C)$, so that $Z(L) = Z(H) = Z(C) = L \cap C$. The last assertion of (1) follows by (1B) since $L \cong L\gamma$. Finally, $N_G(Z)/C_G(Z)$ is cyclic of order er^a or $2er^a$ according as $G = U(n, q)$ or $G \neq U(n, q)$ by [11, (3D)] or [12, (5B)]. Suppose g generates $N_G(Z)$ modulo $C_G(Z)$. Then E and $g^{-1}Eg$ are extraspecial subgroups of $H = C_G(Z)$, and they are conjugate in H by Remark (1) of (1A), so that $h^{-1}g^{-1}Egh = E$ for some $h \in H$ and $gh \in N$. On the other hand, $N \leq N_G(Z)$ and $N^0 = N \cap C_G(Z)$, so that $N/N^0 \cong N_G(Z)/C_G(Z)$ and (1C) holds.

Remark. In the notation of (1C), let $E = \langle x_1, x_2, \ldots, x_{2\gamma} \rangle$, $R' = \langle x_1, x_3, \ldots, x_{2\gamma-1}, Z \rangle$. Identify R with $F(R)$ and R' with $F(R')$. Then $R' \leq R$ and
$C_G(R') = C_1 \times C_2 \times \cdots \times C_r$ is a regular subgroup G, where $C_i \simeq \text{GL}(m, \mathbb{F}_q^{er})$ for all i. Indeed by Remark (1) of (1A) we may suppose the underlying space of $H = C_G(Z)$ has an orthonormal basis $\{[j_1, j_2, \ldots, j_y]\}$, where $1 \leq j_i \leq r$ and $1 \leq k \leq m$, such that the actions of x_1, x_2, \ldots, x_2y on the basis are given by (1.4) or (1.5) with $[j_1, j_2, \ldots, j_y]$ replaced by $[j_1, j_2, \ldots, j_y]k$. Thus each x_{i-1} is a diagonal matrix with respect to the basis for $1 \leq i \leq y$, so $C_H(R') = C_G(R') = C_1 \times C_2 \times \cdots \times C_r$, where $C_i \simeq \text{GL}(m, \mathbb{F}_q^{er})$ for all i.

2. THE RADICAL SUBGROUPS

In this section we shall give a description of the radical subgroups of classical groups. We first consider the unitary group $G = U(n, q)$.

For integers $a \geq 0$ and $\gamma \geq 0$, let Z_a be a cyclic group of order $r^{a+\gamma}$, E_γ an extraspecial group of order $r^{2\gamma+1}$, and Z_aE_γ a central product over $\Omega_1(Z_a) = Z(E_\gamma)$. By (1A) Z_aE_γ can be embedded as a subgroup of $\text{GL}(r^{\gamma}, \mathbb{F}_q^{er})$ such that Z_a is identified with $O_r(Z(\text{GL}(r^{\gamma}, \mathbb{F}_q^{er})))$. Let Λ_a be a polynomial in \mathcal{S} having a primitive $r^{a+\gamma}$th root of unity as a root. The degree of Λ_a is $r^{a+\gamma}$ (cf. [11, p. 126]), so that $U(\mathbb{F}_q^{er^{a+\gamma}}, q)$ has a primary element g with Λ_a as a unique elementary divisor of multiplicity r^γ. By (1.10)

$$C(g) \simeq \text{GL}(r^{\gamma}, \mathbb{F}_q^{er^{\gamma}}).$$

We may identify $\text{GL}(r^{\gamma}, \mathbb{F}_q^{er^{\gamma}})$ with $C(g)$, so that $\text{GL}(r^{\gamma}, \mathbb{F}_q^{er^{\gamma}})$ is embedded as a subgroup of $U(\mathbb{F}_q^{er^{a+\gamma}}, q)$ and $Z_a = \langle g \rangle$. Let $R_{a, \gamma}$ be the image of Z_aE_γ under the composition

$$Z_aE_\gamma \hookrightarrow \text{GL}(r^{\gamma}, \mathbb{F}_q^{er^{\gamma}}) \hookrightarrow U(\mathbb{F}_q^{er^{a+\gamma}}, q).$$

Since $Z_a = \langle g \rangle$, a generator of $Z(R_{a, \gamma})$ is primary, so that by (1C) $R_{a, \gamma}$ is uniquely determined by Z_aE_γ up to conjugacy. For integer $m \geq 1$, let $R_{m, a, \gamma}$ be the image of the m-fold diagonal mapping of $R_{a, \gamma}$ in $U(m\mathbb{F}_q^{er^{a+\gamma}}, q)$ given by

$$g \mapsto \begin{pmatrix} g & & & g \\ & g & & \\ & & \ddots & \\ & & & g \end{pmatrix}, \quad g \in R_{a, \gamma}.$$

Then a generator of $Z(R_{m, a, \gamma})$ is the image of a generator of $Z(R_{a, \gamma})$ under the embedding above, so that it is primary in $U(m\mathbb{F}_q^{er^{a+\gamma}}, q)$ and then $R_{m, a, \gamma}$ is uniquely determined by m and Z_aE_γ up to conjugacy. Let $C_{m, a, \gamma}$ and $N_{m, a, \gamma}$ be the centralizer and normalizer of $R_{m, a, \gamma}$ in $U(m\mathbb{F}_q^{er^{a+\gamma}}, q)$, and let $N_{0, m, a, \gamma} = \{g \in N_{m, a, \gamma}: [g, Z(R_{m, a, \gamma})] = 1\}$. By (1C) $C_{m, a, \gamma} \simeq \text{GL}(m, \mathbb{F}_q^{er^{\gamma}}) \otimes I_\gamma$, where I_γ is the identity matrix of order r^γ and $\text{GL}(m, \mathbb{F}_q^{er^{\gamma}}) \otimes I_\gamma$ is the group $\{g \otimes I_\gamma: g \in \text{GL}(m, \mathbb{F}_q^{er^{\gamma}})\}$. If $R_{m, a, \gamma}$ is radical, then E_γ has exponent r, $N_{0, m, a, \gamma} = L_{m, a, \gamma}C_{m, a, \gamma}$, and $N_{m, a, \gamma}/N_{0, m, a, \gamma}$ is cyclic of order er^γ, where $L_{m, a, \gamma}$ is a subgroup of $N_{0, m, a, \gamma}$ containing $R_{m, a, \gamma}$ such that $L_{m, a, \gamma} \cap C_{m, a, \gamma} = Z(L_{m, a, \gamma}) = Z(C_{m, a, \gamma})$, $[L_{m, a, \gamma}, C_{m, a, \gamma}] = 1$, and $L_{m, a, \gamma}/Z(L_{m, a, \gamma})R_{m, a, \gamma} \simeq \text{Sp}(2\gamma, r)$. In particular, $R_{m, a, \gamma}$ is uniquely determined by m, a, and γ up to conjugacy. Moreover, each linear character of $Z(L_{m, a, \gamma})$ acting trivially on $O_r(Z(L_{m, a, \gamma}))$ can be extended as a character of $L_{m, a, \gamma}$ trivial on $R_{m, a, \gamma}$.
For integer $c \geq 1$, let A_c denote the elementary abelian r-subgroup of order r^c represented by its regular permutation representation. For any sequence $c = (c_1, c_2, \ldots, c_l)$ of nonnegative integers, let $A_c = A_{c_1} \wr A_{c_2} \cdots \wr A_{c_l}$, and let

$$R_{m, \alpha, \gamma, c} = R_{m, \alpha, \gamma} \wr A_c$$

be the wreath product in $U(d, q)$, where $d = m \alpha \gamma + c_1 + \cdots + c_l$. Then $R_{m, \alpha, \gamma, c}$ is determined up to conjugacy in $U(d, q)$. By [3, (1.4)], which applies to $U(d, q)$ with some obvious modifications,

$$C_{U(d, q)}(R_{m, \alpha, \gamma, c}) = C_{m, \alpha, \gamma} \otimes I_c,$$

where I_c is the identity matrix of order $u = r^{c_1 + c_2 + \cdots + c_l}$ and $C_{m, \alpha, \gamma} \otimes I_c$ is defined as before. Moreover,

$$N_{U(d, q)}(R_{m, \alpha, \gamma, c}) = (N_{m, \alpha, \gamma} / R_{m, \alpha, \gamma}) \otimes N_{S(U)}(A_c),$$

$$N_{U(d, q)}(R_{m, \alpha, \gamma, c}) / R_{m, \alpha, \gamma, c} \simeq (N_{m, \alpha, \gamma} / R_{m, \alpha, \gamma}) \times GL(c_1, r) \times \cdots \times GL(c_l, r),$$

where $(N_{m, \alpha, \gamma} / R_{m, \alpha, \gamma}) \otimes N_{S(U)}(A_c)$ is defined as [3, (1.5)]. The proof of (2.2) is the same as that of [3, (4.1)] with GL replaced by U and some obvious modifications. We shall call $R_{m, \alpha, \gamma, c}$ a basic subgroup of $U(d, q)$, d the degree $d(R_{m, \alpha, \gamma, c})$ of $R_{m, \alpha, \gamma, c}$, and l the length $l(R_{m, \alpha, \gamma, c})$ of $R_{m, \alpha, \gamma, c}$.

Let V be a unitary space over F_{q^2}, or a symplectic or orthogonal space over F_q with type $\eta = \pm 1$ if V is orthogonal. Let $G = U(V)$ or $I(V)$, and let R be an r-subgroup of G. We shall say that an R-submodule W of V is nondegenerate or totally isotropic if W is respectively a nondegenerate or a totally isotropic subspace of V.

(2A). Let R be an r-subgroup of G. Then V has an R-module decomposition

$$V = V_1 \perp V_2 \perp \cdots \perp V_v \perp (U_{v+1} \oplus U'_{v+1}) \perp \cdots \perp (U_w \oplus U'_w),$$

where the V_i for $1 \leq i \leq v$ are nondegenerate simple R-submodules, the U_j and U'_j for $v + 1 \leq j \leq w$ are totally isotropic simple R-submodules such that $U_j \oplus U'_j$ is nondegenerate and has no proper nondegenerate R-submodule. Moreover, if R is abelian and the set of vectors $\{V, R\}$ moved by R is V, then $v = 0$ or $v = w$ according as $\varepsilon = 1$ or -1.

Proof. The first half of (2A) follows by the proof of [5, (1B)]. Suppose R is abelian and $[V, R] = V$. Let F_i be the representation of R on V_i or $U_i \oplus U'_i$ according as $i \leq v$ or $i \geq v + 1$. If $i \leq v$, then V_i is a simple R-module and the commuting algebra D of R on V_i contains $F_i(R)$. If $i \geq v + 1$, then U_i is a simple R-module and the representation of R on U'_i is the contragredient of the representation W of R on U_i composed with a field automorphism. Thus the commuting algebra D of R on U_i contains $W(R)$. Since D is a field and $D^x = D \setminus \{0\}$ is a cyclic group, $F_i(R)$ is cyclic generated by g_i for some $g_i \in I(V_i)$ or $I(U_i \oplus U'_i)$ according as $i \leq v$ or $i \geq v + 1$, so that V_i or U_i is a simple (g_i)-module. By (1.8) g_i is primary with a unique elementary divisor $\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2$ of multiplicity 1. Since g_i is an r-element, it follows that $\Gamma \in \mathcal{F}_1$ or \mathcal{F}_2 according as $\varepsilon = -1$ or 1. Thus the underlying space of $F_i(R)$ has the form V_i or $U_i \oplus U'_i$ according as $\varepsilon = -1$ or 1. This proves (2A).
Let $G = U(V)$, R a radical r-subgroup of G, and $N = N_G(R)$. Then there exists a corresponding decomposition
\[V = V_0 \perp V_1 \perp \cdots \perp V_i, \quad R = R_0 \times R_1 \times \cdots \times R_i \]
such that R_0 is the trivial subgroup of $U(V_0)$ and R_i is a basic subgroup of $U(V_i)$ for $i \geq 1$. Moreover, the extraspecial components of R_i for $i \geq 1$ have exponent r.

Proof. Let $V_0 = C(V(R))$ be the set of vectors in V fixed by each element of R and $V_+ = [V, R]$. Then $V = V_0 \perp V_+$ and $R = R_0 \times R_+$, where $R_0 = \{1\}$ and $R_+ \leq U(V_+)$. So $N = U(V_0) \times N_{U(V_+)}(R_+)$ and R_+ is necessarily radical in $U(V_+)$. We may suppose $V = V_+$ by induction. Let F be the natural representation of R in G. The same proof with some obvious modifications as that of [5, (2B)] shows that R can be reduced to the following case: Every characteristic abelian subgroup of R is cyclic and $V = wV_1$ for some $w \geq 1$ such that either V_i is a nondegenerate simple R-module or V_i decomposes as $U_l \otimes U_l'$, where U_l and U_l' are totally isotropic simple R-modules and V_1 has no proper nondegenerate R-submodule. In particular, $Z(F(R))$ is cyclic.

By a result of Hall, [14, 5.4.9], R is a group ZE of symplectic type, where Z is a cyclic r-group and E is an extraspecial r-group of order r^{2y+1}. Thus $Z(F(R)) = F(Z)$ and we may suppose $F(Z) = \langle z \rangle$. Let $H = C_G(F(Z))$ and $C = C_G(F(R))$. Then $F(R) \leq H$ and $C \leq H$, so $Z(H) \leq C$. Since $F(R)$ is radical in G and $C \leq N$, it follows $O_r(C) \leq Z(F(R))$, so that $O_r(Z(H)) \leq O_r(C) \leq Z(F(R))$ and $O_r(Z(C_G(z))) \leq F(Z)$. Thus $O_r(Z(C_G(z)))$ is cyclic and by (1.9) and (1.10) z is primary with a unique elementary divisor γ. So

\[H \simeq GL(m_r(z), e \gamma^r). \]

Identify H with $GL(m_r(z), e \gamma^r)$. Then a generator of $F(Z(E))$ is represented by a scalar multiple of the identity matrix, so that $m_r(z) = m_r^r$ for some integer $m \geq 1$ by Remark (1) of (1A). Since $O_r(Z(H)) \leq F(Z)$ and $z \in O_r(Z(H))$, $F(Z) = O_r(Z(H))$, so that $|Z| = r^{2y+1}$ for some integer $\alpha \geq 0$. By (1C) $R = R_{m, \alpha, \gamma}$ and E has exponent r. This proves (2B).

Let (R, φ) be a weight of $G = U(V)$ and let

\[V = V_0 \perp V_1 \perp \cdots \perp V_i, \quad R = R_0 \times R_1 \times \cdots \times R_i \]

be the corresponding decomposition of (2B). We define

\[V(m, \alpha, \gamma, c) = \sum_i V_i, \quad R(m, \alpha, \gamma, c) = \prod_i R_i, \]

where i runs over all indices such that $R_i = R_{m, \alpha, \gamma, c}$.

(2C). With the preceding notation

\[N(R) = U(V_0) \times \prod_{m, \alpha, \gamma, c} N_{U(V(m, \alpha, \gamma, c))}(R(m, \alpha, \gamma, c)), \]

\[N(R)/R = U(V_0) \times \prod_{m, \alpha, \gamma, c} N_{U(V(m, \alpha, \gamma, c))}(R(m, \alpha, \gamma, c))/R(m, \alpha, \gamma, c). \]

Moreover,

\[N_{U(V(m, \alpha, \gamma, c))}(R(m, \alpha, \gamma, c)) = N_{U(V_{m, \alpha, \gamma, c})}(R_{m, \alpha, \gamma, c}) \otimes S(u), \]

\[N_{U(V(m, \alpha, \gamma, c))}(R(m, \alpha, \gamma, c))/R(m, \alpha, \gamma, c) \]

\[= (N_{U(V_{m, \alpha, \gamma, c})}(R_{m, \alpha, \gamma, c})/R_{m, \alpha, \gamma, c}) \otimes S(u), \]
where \(V_{m,a,y,c} \) is the underlying space of \(R_{m,a,y,c} \) and \(u \) is the number of basic components \(R_{m,a,y,c} \) in \(R(m, \alpha, \gamma, c) \).

Proof. The proof of [3, (4B)] can be applied here with \(GL \) replaced by \(U \) and some obvious modifications.

We now consider radical subgroups of classical groups and as before, we suppose \(q \) is odd. For integers \(\alpha \geq 0 \) and \(\gamma \geq 0 \), let \(\Lambda_\alpha \) be a polynomial in \(S \) having a primitive \(r^{\alpha+\gamma} \)-th root of unity as a root. Then the degree of \(\Lambda_\alpha \) is \(2er^\alpha \) and \(\Lambda_\alpha \in S_1 \) or \(S_2 \) according as \(\varepsilon = -1 \) or \(1 \) (see [12, (5.1)]). Let \(V_{a,y} \) be a symplectic or orthogonal space over \(\mathbb{F}_q \) of dimension \(2er^{a+y} \) and \(\eta(V_{a,y}) = \varepsilon \) if \(V_{a,y} \) is orthogonal. Then by (1.11) \(I(V_{a,y}) \) has a primary element \(g \) with a unique elementary divisor \(\Lambda_\alpha \) of multiplicity \(r^\gamma \).

By (1.10) \(C_{I(V_{a,y})}(g) \cong GL(r^\gamma, \varepsilon q^{er^\alpha}) \) and we may identify these two groups. By (1A) \(Z(\mathbb{F}_q) \) can be embedded as a subgroup of \(GL(r^\gamma, \varepsilon q^{er^\alpha}) \) such that \(Z_\alpha = O_\varepsilon(\mathbb{Z}(GL(r^\gamma, \varepsilon q^{er^\alpha}))) \), where \(Z(\mathbb{F}_q) \) is defined as before. The image \(R_{a,y} \) of \(Z(\mathbb{F}_q) \) under the composition

\[
Z(\mathbb{F}_q) \hookrightarrow GL(r^\gamma, \varepsilon q^{er^\alpha}) \hookrightarrow I(V_{a,y})
\]

is then determined up to conjugacy. A generator of \(Z(R_{a,y}) \) is primary, so by (1C) \(R_{a,y} \) is uniquely determined by \(Z_\alpha \) up to conjugacy.

For integer \(m \geq 1 \), let \(V_{m,a,y} = V_{a,y} \perp V_{a,y} \perp \cdots \perp V_{a,y} \) (\(m \) terms), and let \(R_{m,a,y} \) be the image of the \(m \)-fold diagonal mapping of \(R_{a,y} \) in \(I(V_{m,a,y}) \) given by

\[
g \mapsto \begin{pmatrix} g & \cdots & g \\ g & \cdots & g \end{pmatrix}, \quad g \in R_{a,y}.
\]

The same proof as the unitary case shows that \(R_{m,a,y} \) is also uniquely determined by \(m \) and \(Z_\alpha \) up to conjugacy. In addition, \(\eta(V_{m,a,y}) = \varepsilon^m \) if \(V_{m,a,y} \) is orthogonal.

Let \(C_{m,a,y} \) and \(N_{m,a,y} \) be the centralizer and normalizer of \(R_{m,a,y} \) in \(I(V_{m,a,y}) \) respectively, and let \(N_{m,a,y}^0 = \{ g \in N_{m,a,y} : [g, Z(R_{m,a,y})] = 1 \} \). Then \(N_{m,a,y}^0 \leq N_{m,a,y} \) and by (1C) \(C_{m,a,y} \cong GL(m, \varepsilon q^{er^\alpha}) \otimes I_\gamma \), where \(I_\gamma \) is the identity matrix of degree \(r^\gamma \) and \(GL(m, \varepsilon q^{er^\alpha}) \otimes I_\gamma \) is defined as in the unitary case. In particular, if \(R_{m,a,y} \) is radical in \(I(V_{m,a,y}) \), then \(R_{m,a,y} \) has exponent \(r \), \(N_{m,a,y}^0 = L_{m,a,y} C_{m,a,y} \), and \(N_{m,a,y}/N_{m,a,y}^0 \) is cyclic of order \(2er^\alpha \), where \(L_{m,a,y} \cap C_{m,a,y} = Z(L_{m,a,y}) = Z(C_{m,a,y}) \), \([L_{m,a,y}, C_{m,a,y}] = 1 \), \(R_{m,a,y} \leq L_{m,a,y} \), and \(L_{m,a,y}/Z(L_{m,a,y})R_{m,a,y} \cong Sp(2\gamma, r) \). So \(R_{m,a,y} \) is uniquely determined by \(m, \alpha, \) and \(\gamma \) up to conjugacy in \(I(V_{m,a,y}) \). Moreover, by (1C) each linear character of \(Z(L_{m,a,y}) \) acting trivially on \(O_\varepsilon(Z(L_{m,a,y})) \) can be extended as a character of \(L_{m,a,y} \) acting trivially on \(R_{m,a,y} \).

For each sequence \(c = (c_1, c_2, \ldots, c_l) \) of nonnegative integers, let

\[
(2.4) \quad V_{m,a,y,c} = V_{a,y} \perp V_{a,y} \perp \cdots \perp V_{a,y} \quad (u \text{ terms}),
\]

\[
A_c = A_{c_1} \cup A_{c_2} \cup \cdots \cup A_{c_l}, \quad R_{m,a,y,c} = R_{m,a,y} \cup A_c,
\]

where \(u = r^{c_1+c_2+\cdots+c_l} \) and each \(A_{c_i} \) is defined as before. Then \(R_{m,a,y,c} \) is determined up to conjugacy in \(I(V_{m,a,y,c}) \) and \(\eta(V_{m,a,y,c}) = \varepsilon^m \) if \(V_{m,a,y,c} \)
is orthogonal. By [3, (1.4)] with some obvious modifications
\[C_{I(V_{m,a,y,c})}(R_{m,a,y,c}) = C_{m,a,y} \otimes I_c, \]
where \(I_c \) is the identity matrix of order \(u \) and the right-hand sides is defined as before. Moreover, the same proof as that of [3, (4.1)] with \(\text{GL} \) replaced by \(I \) shows that
\[N_{I(V_{m,a,y,c})}(R_{m,a,y,c}) = (N_{m,a,y}/R_{m,a,y}) \otimes N_{S(u)}(A_c), \]

(2.5) \[N_{I(V_{m,a,y,c})}(R_{m,a,y,c})/R_{m,a,y,c} = (N_{m,a,y}/R_{m,a,y}) \times \text{GL}(c_1, r) \times \cdots \times \text{GL}(c_l, r), \]
where \((N_{m,a,y}/R_{m,a,y}) \otimes N_{S(u)}(A_c)\) is defined as [3, (1.5)]. We shall call \(R_{m,a,y,c} \) a basic subgroup of \(I(V_{m,a,y,c}) \), \(\dim V_{m,a,y,c} \) the degree \(d(R_{m,a,y,c}) \) of \(R_{m,a,y,c} \), and \(l \) the length \(l(R_{m,a,y,c}) \) of \(R_{m,a,y,c} \).

(2D). Let \(V \) be a symplectic or orthogonal space over \(F_q \), \(G = I(V) \) the group of all isometries of \(V \), and \(R \) a radical subgroup of \(G \). Then there exists a corresponding decomposition
\[V = V_0 \perp V_1 \perp \cdots \perp V_i, \quad R = R_0 \times R_1 \times \cdots \times R_l, \]
such that \(R_0 \) is the trivial subgroup of \(I(V_0) \) and \(R_i \) is a basic subgroup of \(I(V_i) \) for \(i \geq 1 \). Moreover, the extraspecial components of \(R_i \) for \(i \geq 1 \) have exponent \(r \).

Proof. Let \(V_0 = C_V(R) \) and \(V_+ = [V, R] \). Then \(V = V_0 \perp V_+ \) and \(R = R_0 \times R_+ \), where \(R_0 = \langle V_0 \rangle \) and \(R_+ \leq I(V_+) \). In particular, \(N(R) = I(V_0) \times N_{I(V_+)}(R_+) \) and \(R_+ \) is necessarily a radical subgroup of \(I(V_+) \). By induction we may suppose \(V = V_+ \). Thus \(Z(R) \) is abelian and \([V, Z(R)] = V\). By (2A) we may write the \(Z(R) \)-module \(V \) as
\[V = m_1V_1 \perp m_2V_2 \perp \cdots \perp m_wV_w, \]
where each \(V_i \) is either a nondegenerate simple \(Z(R) \)-submodule or a sum \(U_i \oplus U'_i \) of totally isotropic simple \(Z(R) \)-submodules \(U_i, U'_i \) according as \(e = -1 \) or \(1 \), and \(m_i \) is the multiplicity of \(V_i \) in \(V \) for all \(i \geq 1 \). If \(e = -1 \), then \(r|q^e - 1 \) and \(F_{q^{m_i}} \) is the commuting algebra of \(Z(R) \) on \(V_i \) for some \(\alpha_i \geq 0 \) since \([V_i, Z(R)] = V_i \) and \(Z(R) \) is an \(r \)-group. Similarly, if \(e = 1 \), then \(r\alpha_i - 1 \), \(V_i = U_i \oplus U'_i \), and \(F_{q^{m_i}} \) is the commuting algebra of \(Z(R) \) on \(U_i \) for some integer \(\alpha_i \geq 0 \). In all cases \(\dim V_i = 2\alpha_i \). Let \(N^0 = \{g \in N(R) : [g, Z(R)] = 1\} \), and let \(H = C_G(Z(R)) \). Then \(h(m_iV_i) = m_iV_i \) for \(h \in H \) and all \(i \geq 1 \). Thus there exists a corresponding decomposition
\[H = H_1 \times H_2 \times \cdots \times H_w \]
such that \(H_i \simeq \text{GL}(m_i, q^{e\alpha_i}) \leq I(m_iV_i) \) for all \(i \geq 1 \). Since \(R \) is radical and \(N^0 \leq N \), it follows \(O_r(N^0) \leq O_r(N) = R \). On the other hand, \(R \leq N^0 \) and \(N^0 = N_H(R_i) \), so \(R = O_r(N^0) \) and \(R \) is radical in \(H \).

Let \(R_i \) be the group of linear operators which agree with an element of \(R \) on \(m_iV_i \) and are the identity on \(m_jV_j \) for \(j \neq i \). Then \(N^0 \) permutes the pairs \((m_iV_i, R_i)\) for \(1 \leq i \leq w \), so that \(R \leq N^0 \cap R_1 \times R_2 \times \cdots \times R_w \leq N^0 \). It follows that \(R = R_1 \times R_2 \times \cdots \times R_w \) and \(R_i = O_r(N_i) \), where \(N_i = N_H(R_i) \). Thus \(R_i \) is radical in \(H_i \) for all \(i \). By induction on \(\dim V \), we may suppose \(w = 1 \), so that \(V = m_1V_1 \), \(R = R_1 \), \(H = H_1 \), and \(Z(R) = Z(R_1) \) is cyclic generated by some
\[x \in I(V). \] But \(H = C_G(x) \) and \(O_r(Z(H)) \leq O_r(H) \), so \(O_r(Z(H)) \leq Z(R) \). By (1.9) and (1.10) \(x \) is primary in \(G \). Apply [3, (4A)] or (2B) to \(H \cong GL(m_1, eqr^m) \). So \(R \) is a basic subgroup \(R_{m,a,y,c} \) of \(H \), where \(m, y, \alpha \) are integers, and \(c = (c_1, \ldots, c_t) \) is a sequence of nonnegative integers such that \(\alpha > \alpha_1 \), and \(mer^{a+y+c_1+\ldots+c_t} = m_1e^{ra_1} \). Moreover, the extraspecial components of \(R_{m,a,y,c} \) have exponent \(r \). In particular, \(\dim V = 2mer^{a+y+c_1+\ldots+c_t} \) and \(\eta(V) = e^m = e^{m_1} \) if \(V \) is orthogonal. Thus \(I(V) \) has a basic subgroup \(R' \) of the form \(R_{m,a,y,c} \) defined by (2.4), where the extraspecial components of \(R' \) have exponent \(r \). So \(Z(R) \) and \(Z(R') \) are cyclic generated by primary elements of order \(r^{a+\alpha} \) in \(I(V) \), and they are conjugate in \(I(V) \). Thus we may suppose \(Z(R) = Z(R') \), so that \(R' \leq H \). By definition \(R' \) still has the type \(R_{m,a,y,c} \) as a subgroup of \(H \), so that \(R' \) and \(R \) are conjugate in \(H \). Thus \(R = R_{m,a,y,c} \) is a basic subgroup of \(I(V) \) and (2D) follows.

Remark. In the notation of (2B) or (2D), suppose \(t \neq 0 \). Then there exists an element \(\rho \) of \(Z(R) \) such that (1) \(|\rho| = r^a \); (2) \([V, \rho] = \sum_{i=1}^t V_i \); (3) the restriction of \(\rho \) on \([V, \rho] \) is primary. Such an element exists by (2B) or (2D) and will be called a primary element of \(R \). If \(\rho \) is a primary element of \(R \), then \(\langle \rho \rangle \) is uniquely determined by \(R \) up to conjugacy and \(C_{G}(\rho) \cong U(V_0)^{\times}GL(m, eq^e) \) or \(C_{G}(\rho) \cong I(V_0)^{\times}GL(m, eq^e) \) for some \(m \geq 1 \) according as \(G = U(V) \) or \(I(V) \).

Let \((R, \varphi)\) be a weight of \(G = I(V) \) and let
\[
V = V_0 \perp V_1 \perp \cdots \perp V_t, \quad R = R_0 \times R_1 \times \cdots \times R_t,
\]
be the corresponding decomposition of (2D). We define
\[
V(m, \alpha, \gamma, c) = \sum_i V_i, \quad R(m, \alpha, \gamma, c) = \prod_i R_i,
\]
where \(i \) runs over all indices such that \(R_i = R_{m,a,y,c} \).

(2E). With the preceding notation
\[
N(R) = I(V_0) \times \prod_{m,a,y,c} N_{I(V(m,\alpha,\gamma,c))}(R(m, \alpha, \gamma, c)),
\]
\[
N(R)/R = I(V_0) \times \prod_{m,a,y,c} N_{I(V(m,\alpha,\gamma,c))}(R(m, \alpha, \gamma, c))/R(m, \alpha, \gamma, c).
\]

Moreover,
\[
N_{I(V(m,\alpha,\gamma,c))}(R(m, \alpha, \gamma, c)) = N_{I(V_{m,\alpha,\gamma,c})}(R_{m,\alpha,\gamma,c}) \cdot S(u),
\]
\[
N_{I(V(m,\alpha,\gamma,c))}(R(m, \alpha, \gamma, c))/R(m, \alpha, \gamma, c) = (N_{I(V_{m,\alpha,\gamma,c})}(R_{m,\alpha,\gamma,c})/R_{m,\alpha,\gamma,c}) \cdot S(u),
\]
where \(V_{m,\alpha,\gamma,c} \) is the underlying space of \(R_{m,\alpha,\gamma,c} \) and \(u \) is the number of basic components \(R_{m,\alpha,\gamma,c} \) in \(R(m, \alpha, \gamma, c) \).

Proof. The proof is essentially the same as that of [3, (4B)] with \(GL \) replaced by \(I \) and some obvious modifications, except the minimal elements of \(\mathcal{E}_i \) have dimension \(2mer^{a+\gamma} \) when \(R_i = R_{m,a,y,c} \), where \(\mathcal{E}_i \) is defined there.

3. More on basic subgroups

Let \(R \) be a radical subgroup of a finite group \(G \), \(N = N(R) \), \(C = C(R) \). The stabilizer in \(N \) of an irreducible character \(\theta \) of \(CR \) will be denoted by
WEIGHTS FOR CLASSICAL GROUPS

We denote the sets of irreducible characters of $N(\theta)$ and N which cover θ and which have defect 0 as characters of $N(\theta)/R$ and N/R respectively by $\text{Irr}^0(N(\theta), \theta)$ and $\text{Irr}^0(N, \theta)$. By Clifford theory the induction mapping $\psi \mapsto I(\psi) = \text{Ind}_{N(\theta)}^N(\psi)$ induces a bijection from $\text{Irr}^0(N(\theta), \theta)$ to $\text{Irr}^0(N, \theta)$. Since $\psi(1) = d(\psi)\theta(1)$ for some integral divisor $d(\psi)$ of $(N(\theta): CR)$, it follows that $(R, I(\psi))$ is a weight of G if and only if

$$d(\psi)_r = (N(\theta): CR)_r, \quad \theta(1)_r = (CR: R)_r,$$

and in particular, θ then has defect 0 as a character of CR/R. In this case the block b of CR containing θ has a defect group R and the canonical character θ. Moreover, for any ψ of $\text{Irr}^0(N(\theta), \theta)$, $I(\psi)$ is a character of b^N and $(R, I(\psi))$ is a b^G-weight of G. Following [3, p. 3] all B-weights for a block B of G have the form $(R, I(\psi))$, where R runs over representatives for the conjugacy G-classes of radical subgroups, b runs over representatives for the conjugacy $N(R)$-classes of blocks of $C(R)R$ such that b has defect group R and $b^G = B$, and ψ runs over $\text{Irr}^0(N(\theta), \theta)$. Here θ is the canonical character of b. A pair (R, b) of an r-subgroup R of G and a block b of C is called a Brauer pair of G. In particular, pairs $(1, B)$ correspond to blocks B of G.

Now we consider the unitary group $G = U(n, q)$. Given $\Gamma \in \mathcal{S}$, let e_Γ, α_Γ, m_Γ be integers defined as follows: e_Γ is the multiplicative order of $e_\Gamma q^{d_\Gamma}$ modulo r, $r^{e_\Gamma} = (d_\Gamma)_r$, and $m_\Gamma r^{e_\Gamma} = d_\Gamma e_\Gamma$. By [7, (3.2)] the Brauer pairs (R, b) of G are labeled by ordered triples (R, s, κ), where s is a semisimple r'-element of a dual group G^* of G, and $\kappa = \prod_{\Gamma \in \mathcal{S}} \kappa_\Gamma$ is a product of partitions κ_Γ such that each κ_Γ is an e_Γ-core of a partition of the multiplicity $m_\Gamma(s)$ of s. This labeling extends the labeling [11, (5D)] by Fong and Srinivasan for blocks B of G by ordered pairs (s, κ). Since $G^* \simeq G$, we may identify $C^* \simeq G$.

Let \mathcal{S}' be the subset of \mathcal{S} consisting of polynomials whose roots have r'-order. In [11, (5A)] each Γ in \mathcal{S}' determines a block Γ_Γ of $G = U(e_\Gamma q^{d_\Gamma}, q)$ with defect group $R_\Gamma = R_{e_\Gamma q^{d_\Gamma}, q}$ as follows: Let $C_\Gamma = C_{G_\Gamma}(R_\Gamma)$, $N_\Gamma = N_{G_\Gamma}(R_\Gamma)$, so that $C_\Gamma \simeq \text{GL}(m_{\Gamma r^{e_\Gamma}}, e_\Gamma r^{e_\Gamma})$ and N_Γ/C_Γ is cyclic of order $e_\Gamma r^{e_\Gamma}$. Then C_Γ has a block b_Γ with defect group R_Γ and label $(s_\Gamma, -)$ in C^*_Γ such that as an element of G^*_Γ, s_Γ is primary with a unique elementary divisor Γ of multiplicity e_Γ. If θ_Γ is the canonical character of b_Γ and $N(\theta_\Gamma)$ is its stabilizer in N_Γ, then $(N(\theta_\Gamma): C_\Gamma) = e_\Gamma$. The block b_Γ induces a block $b_{\Gamma r^{e_\Gamma}}$ of G which will be denoted by B_Γ. Since $(e_\Gamma, r) = 1$, B_Γ has a defect group R_Γ and the label $(s_\Gamma, -)$ (see [7, 3.2]). We shall also write s_Γ as $e_\Gamma \Gamma$. Conversely, let $G = U(m_{\Gamma r^{e_\Gamma}}, q)$, and B a block of G with defect group $R = R_{m_{\Gamma r^{e_\Gamma}}, q}$. By [11, (4B) and (5A)] $(m, r) = 1$ and there exists a unique $\Gamma \in \mathcal{S}'$ such that Γ and B correspond in the preceding manner. In particular, $m = m_\Gamma$ and $\alpha = \alpha_\Gamma$.

The proofs of the following two lemmas are similar to that of [4, (3A) and (3B)].

(3A). Given $\Gamma \in \mathcal{S}'$, let $G = U(r^e e_\Gamma q^{d_\Gamma}, q)$, $R = R_{m_{\Gamma r^{e_\Gamma}}, \alpha_{\Gamma r^{e_\Gamma}}, q}$ a basic subgroup of G, and $C = C_{G}(R)$. Then $C = C_{\Gamma} \otimes I_\Gamma$, where I_Γ is the identity matrix of order r^e. The irreducible character $\theta = \theta_\Gamma \otimes I_\Gamma$ of C defined by $\theta(c \otimes I_\Gamma) = \theta_\Gamma(c)$ for $c \in C_{\Gamma}$ is then a character of defect 0 of CR/R, and $|\text{Irr}^0(N(\theta), \theta)| = e_\Gamma$.

Proof. All statements but the last are clear. Let \(N = N_G(R) \), and \(N^0 \) the subgroup \(\{ g \in N : [g, Z(R)] = 1 \} \) of \(N \). By (1C) \(N^0 = LC \) and \(N/N^0 \) is cyclic of order \(e_r \), where \(R \leq L \), \(L \cap C = Z(L) = Z(C) \), \([L, C] = 1 \), and \(L/Z(L)R \simeq \text{Sp}(2\gamma, r) \). Moreover, each linear character of \(Z(L) \) acting trivially on \(O_c(Z(L)) \) can be extended as a character of \(L \) trivial on \(R \). Thus \(N^0 \leq N(\theta) \), and \(N(\theta)/N^0 \) is cyclic. An irreducible constituent of the restriction of \(\theta \) to \(Z(C) \) is a linear character trivial on \(O_c(Z(C)) \) and so has an extension \(\xi \) to \(L \) trivial on \(R \). Thus \(\xi \theta \) is an extension of \(\theta \) to \(N^0 \). Since \(N^0/RC \simeq L/Z(L)R \simeq \text{Sp}(2\gamma, r) \), the Steinberg character \(St \) of \(N_0/RC \) can be regarded as a character of \(N^0 \) trivial on \(CR \). Thus \(\theta = St\xi \theta \) is irreducible since its restriction to \(C \) is irreducible. By (3.1) \(\theta \in \text{Irr}^0(N^0, \theta) \). Suppose \(\psi \) is a character of \(\text{Irr}^0(N^0, \theta) \). Then by Clifford theory \(\psi = \chi\xi \theta \) for some irreducible character \(\chi \) of \(N^0 \) trivial on \(C \). Since \(\psi \) and \(\xi \theta \) act trivially on \(R \), \(\chi \) acts trivially on \(R \), so that \(\chi \) is an irreducible character of \(N^0/CR \). Since \(\psi \) has defect 0 as a character of \(N^0/R \), \(\chi \) has defect 0 as a character of \(N^0/RC \simeq \text{Sp}(2\gamma, r) \). Thus \(\chi = St \) and \(\text{Irr}^0(N^0, \theta) = \{ \theta \} \). If \(N(\theta) \) is the stabilizer of \(\theta \) in \(N \), then \(N(\theta) = N(\theta) \) and \(\text{Irr}^0(N(\theta), \theta) = \text{Irr}^0(N(\theta), \theta) \).

By (1C) a generator \(\sigma \) of \(N/N^0 \) induces a field automorphism of order \(e_r \) on \(C(Z(R)) \). Since \(C = C_\Gamma \otimes I_\gamma \) is a subgroup of \(C(Z(R)) \) invariant under \(\sigma \), \(\sigma \) also induces a field automorphism of order \(e_r \) on \(C \). But a generator \(\sigma_1 \) of \(N Rafael/C_\Gamma \) also induces a field automorphism of order \(e_r \) on \(C_\Gamma \simeq GL(m_\Gamma, r) \). By replacing generators, we may suppose \(\sigma \) induces \(\sigma_1 \) on \(C_\Gamma \). It follows that \(N(\theta)/N^0 \simeq N(\theta)/C_\Gamma \) and \(N(\theta)/N^0 \) is cyclic, \(\theta \) extends in \(e_r \) ways to irreducible characters of \(N(\theta) \) which cover \(\theta \), and since \(e_r \) is prime to \(r \), these extensions are in \(\text{Irr}^0(N(\theta), \theta) \).

Remark. The weights \((R, I(\psi)) \) of \(G \) for \(\psi \in \text{Irr}^0(N(\theta), \theta) \) are \(B \)-weights, where \(B \) is the block of \(G \) labeled by \((r^2e_1\Gamma, -) \), \(I \) is the induction operator from \(N(\theta) \) to \(N \), and \(r^2e_1\Gamma \) represents an element of \(U(r^2e_1\Gamma, -) \) with a unique elementary divisor \(\Gamma \) of multiplicity \(r^2e_1 \). Indeed, if \(b \) is the block of \(C \) containing \(\theta \), then \((R, b) \) is labeled by \((R, r^2e_1\Gamma, -) \) and the weights are \(h^G \)-weights. Moreover, by (7, 3.2) \(h^G \) is labeled by \((r^2e_1\Gamma, -) \).

Given \(\Gamma \in \mathcal{F} \), let \(G = U(\Gamma, q) \) and \(R = R_m, r, \gamma, e \) a basic subgroup of \(G \), where \(d \) and \(\gamma \) are nonnegative integers, \(e = (c_1, c_2, \ldots, c_l) \) such that \(\gamma + c_1 + c_2 + \cdots + c_l = d \). Then \(C = C_G(R) = C_\Gamma \otimes I_\gamma \otimes I_e \), where \(I_\gamma, I_e \) are identity matrices of orders \(r^2 \) and \(r^{c_1+c_2+\cdots+c_l} \), respectively. The irreducible character of \(C \) defined by

\[
\theta(c \otimes I_\gamma \otimes I_e) = \theta_\Gamma(c)
\]

for \(c \in C_\Gamma \) is then a character of defect 0 of \(CR/R \). We shall say the pair \((R, \theta) \) is of type \(\Gamma \). If \(b \) is the block of \(C \) containing \(\theta \), then \((R, b) \) has label \((R, r^2e_1\Gamma, -) \).

(3B). Let \(G = U(n, q), R \) a basic subgroup of \(G \), \(b \) a block of \(C(R)R \) with defect group \(R \), and \(\theta \) the canonical character of \(b \). Then \((R, \theta) \) has type \(\Gamma \) for some \(\Gamma \in \mathcal{F} \).

Proof. Suppose \(R = R_m, \alpha, \gamma, e \). Set \(G_1 = U(m, q) \), \(R_1 = R_m, \alpha, 0 \), \(C_1 = C_{G_1}(R_1) \). So \(C_1 \simeq GL(m, eqe^r) \) and \(C = C_1 \otimes I_\gamma \otimes I_e \). Then \(\theta \) has the form
$\theta_1 \otimes I_r \otimes I_c$, where θ_1 is a character of C_1. Since θ has defect 0 as a character of CR/R and $CR/R \simeq C_1/R_1$, θ_1 also has defect 0 as a character of C_1/R_1. The block b_1 of C_1 containing θ_1 then has defect group R_1. By [11, (5A)] there is a unique $\Gamma \in \mathcal{F}$ such that $R_1 = R_\Gamma$ and $\theta_1 = \theta_\Gamma$. Thus $m = m_\Gamma$, $\alpha = \alpha_\Gamma$, and (R, θ) has type Γ.

Following the notation of [12], we denote V and V^* finite-dimensional symplectic or orthogonal spaces over \mathbb{F}_q related as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>$\dim V$</th>
<th>$\dim V^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>symplectic</td>
<td>$2n$</td>
<td>$2n + 1$</td>
</tr>
<tr>
<td>orthogonal</td>
<td>$2n + 1$</td>
<td>$2n$</td>
</tr>
</tbody>
</table>

where $\eta(V) = \eta(V^*) = 1$ in the first two cases and $\eta(V) = \eta(V^*)$ in the third case. Here $\eta(V) = 1$ for a symplectic space as before. Moreover, $I(V)$ and $I(V^*)$ are the groups of isometries of V and V^*, $I_0(V)$ and $I_0(V^*)$ the subgroups of $I(V)$ and $I(V^*)$ of determinant 1. We shall call $I_0(V^*)$ the dual group of $I_0(V)$. Let $G = I_0(V)$ and $G^* = I_0(V^*)$. Given a semisimple element s of G^*, let (s) be the conjugacy class of s in G^*, and let $\mathcal{E}(G, (s))$ be defined by [8, p. 57]. Namely $\mathcal{E}(G, (s))$ is the set of the irreducible constituents of Deligne-Lusztig generalized characters associated with (s). Given a semisimple r'-element s of G^*, let

$$\mathcal{E}_r(G, (s)) = \bigcup_u \mathcal{E}(G, (su)),$$

where u runs over all the r-elements of $C_{G^*}(s)$. By [8, 2.2], $\mathcal{E}_r(G, (s))$ is a union of r-blocks.

The following lemma is due to Fong and Olsson.

(3C). Let ρ be an r-element of G, b a block of $H = C_G(\rho)$, and B a block of G. Suppose H is regular subgroup of G, $B \subseteq \mathcal{E}_r(G, (s))$, and $b \subseteq \mathcal{E}_r(H, (t))$. If $b^G = B$, then s and t are conjugate in G^*.

Proof. By Brauer's Second Main Theorem there exists a nonzero generalized decomposition number $d_{\chi, \varphi}^b$ for some irreducible character $\chi \in B$ and irreducible modular character $\varphi \in b$. Let $\chi^{(b)}(\rho \tau) = \sum_{\varphi' \in b'} d_{\chi, \varphi'}^b(\tau')$, where b' is a block of H, τ runs over the r'-elements in H, and φ' runs over the irreducible modular characters in b'. Then $\chi(\rho \tau) = \sum_{b'} \chi^{(b')}(\rho \tau)$. On the other hand, by the theorem of Curtis type [9, (3.7)],

$$\chi(\rho \tau) = \sum_{b'} \sum_{\zeta \in b'} (\chi, R_H^G(\zeta)) \zeta(\rho \tau),$$

where $R_H^G(\zeta)$ is the generalized Deligne-Lusztig character, b' runs over blocks of H, and ζ runs over the irreducible characters of b'. Since the $\zeta(\rho \tau)$ for $\zeta \in b'$ are linear combinations of the Brauer characters $\varphi(\tau)$ for $\varphi \in b'$ and the φ are linear independent, it follows that

$$\chi^{(b)}(\rho \tau) = \sum_{\zeta \in b} (\chi, R_H^G(\zeta)) \zeta(\rho \tau),$$

and $\chi^{(b)}(\rho \tau) \neq 0$ for some r'-element τ. So $(\chi, R_H^G(\zeta)) \neq 0$ for some $\zeta \in b$. Suppose $\chi \in \mathcal{E}(G, (su))$ and $\zeta \in \mathcal{E}(H, (tv))$, where u is an r-element in
18

Let \(R \) be a radical \(r \)-subgroup of \(G \), \(b \) a block of \(C_G(R)R \) with defect group \(R \), \(V_0 = C_V(R) \), and \(V_+ = [V, R] \). Then \(b^G \) is well defined and \(b^G \subseteq \mathcal{E}_r (G, (s)) \) for some \(s \in G^* \). We shall give a decomposition of \(s \) corresponding to the decomposition \(V_0 \perp V_+ \) of \(V \) and give a label to the Brauer pair \((R, b) \) when \(V = V_+ \), where \(b \) is regarded as a block of \(C_G(R) \). Let \(\rho \) be a primary element of \(R \) given by the remark of (2D), and let \(K = C_G(\rho) \). Then \(K = K_0 \times K_+ \), where \(K_0 = I_0(V_0) \) and \(K_+ \simeq \GL(m, \mathbb{F}_e) \) for some \(m \geq 0 \). Since \(\langle \rho \rangle \leq R \), there exists a unique block \(B_\rho \) of \(K \) such that

\[
(1, b^G) \leq (\langle \rho \rangle, B_\rho) \leq (R, b).
\]

Let \(B_\rho = B_{\rho, 0} \times B_{\rho, +} \), where \(B_{\rho, 0} \), \(B_{\rho, +} \) are blocks of \(K_0 \), \(K_+ \) respectively. Then \(B_{\rho, 0} \subseteq \mathcal{E}_r (K_0, (s_0)) \) and \(B_{\rho, +} \subseteq \mathcal{E}_r (K_+, (s_+)) \) for some \(s_0 \in K_0^* \) and \(s_+ \in K_+^* \). By (3C) \(s_0 \times s_+ \) and \(s \) are conjugate in \(G^* \) and we may suppose \(s = s_0 \times s_+ \), so that this gives a decomposition of \(s \). Moreover, the decomposition depends only on \(b^G \) not on the choice of \(R \). Indeed there exists a defect group \(D \) of \(b^G \) such that \(Z(D) \leq Z(R) \leq R \leq D \), so that \(V_0 = C_V(D) \) and \(V_+ = [V, D] \) and a primary element of \(D \) is a primary element of \(R \). Thus we may suppose \(\rho \in Z(D) \) is a primary element of \(D \) and then the decomposition \(s = s_0 \times s_+ \) is determined by \(b^G \). Suppose now \(V = V_+ \). Then \(B_\rho = B_{\rho, +} \) and \(B_\rho \subseteq \mathcal{E}_r (K_+, (s)) \). Since \(C_G(R) = C_K(R) \), we may view \((R, b)\) as a Brauer pair of \(K \) and then \((R, b)\) has a Broué labeling \((R, t, -)\), where \(t \in K^* \). Here, the third component of the label is empty since \(K \simeq \GL(m, \mathbb{F}_e) \) and \(R \) acts fixed-point freely on the underlying space of \(K \). By definition of normal inclusion of Brauer pairs, \((1, B_\rho) \leq (R, b) \) holds in \(K \) and by [7, (3.2)], \(t \) and \(s \) are conjugate in \(K^* \). In particular, \(t \) determines a unique conjugacy class of \(G^* \). We then give \((R, b)\) the label \((R, t, -)\).

Given \(\Gamma \) in \(\mathcal{S} \), let \(e_\Gamma \), \(o_\Gamma \), and \(m_\Gamma \) be the following integers: \(e_\Gamma \) is the multiplicative order of \(q^{2\delta_\Gamma} \) or \(q^{\delta_\Gamma} \) modulo \(r \) according as \(\Gamma \in \mathcal{S}_1 \) or \(\Gamma \in \mathcal{S}_2 \), \(r^{en_\Gamma} (\delta_\Gamma) \), and \(m_\Gamma e^{en_\Gamma} = \delta_\Gamma e_\Gamma \). In addition, let \(\beta_\Gamma = 1 \) or \(2 \) according as \(\Gamma \in \mathcal{S}_1 \cup \mathcal{S}_2 \) or \(\Gamma \in \mathcal{S}_0 \).

Suppose \(\dim V \) is even and \(s \) is a semisimple element of \(I_0(V^*) \) with primary decomposition

\[
V^* = \sum_{\Gamma} V^{\ast}_\Gamma(s), \quad s = \prod_{\Gamma} s(\Gamma).
\]

We define a semisimple element \(s^* \) of \(I_0(V) \), which is determined uniquely up to conjugacy in \(I(V) \), as follows: If \(V \) is orthogonal, then \(V \) and \(V^* \) have the same dimension and type, so that \(m_\Gamma(s) \) and \(\eta_\Gamma(s) \) satisfy the relations (1.11). Thus a semisimple element, denoted by \(s^* \), exists in \(I(V) \) such that \(m_\Gamma(s^*) = m_\Gamma(s) \) and \(\eta_\Gamma(s^*) = \eta_\Gamma(s) \). Since \(s \in G^* \), it follows that \(s^* \in G \). If \(V \) is symplectic, then \(V^* \) is an odd dimensional orthogonal space. Let \(\eta_\Gamma = 1 \) for all \(\Gamma \in \mathcal{S} \), and \(n_\Gamma = m_\Gamma(s) \) except when \(\Gamma = X - 1 \), in which case, \(n_\Gamma = m_\Gamma(s) - 1 \). Then \(n_\Gamma \) and \(\eta_\Gamma \) satisfy the relations (1.11) with \(\eta_\Gamma(s) \) and \(\eta_\Gamma(s) \) replaced by \(n_\Gamma \) and \(\eta_\Gamma \) respectively. So a semisimple element, denote by \(s^* \), exists in \(G \) such that \(m_\Gamma(s^*) = n_\Gamma \) and \(\eta_\Gamma(s^*) = \eta_\Gamma = 1 \). Thus \(s^* \) is
uniquely determined up to conjugacy in \(I(V) \) and \(\det s^* = 1 \). We shall call \(s^* \) a dual of \(s \).

The following proposition is due to Fong and Olsson.

\[
(3D). \text{The dual mapping } s \mapsto s^* \text{ induces a bijection } f: (s) \mapsto (s^*) \text{ from the conjugacy classes of r-elements of } I_0(V^*) \text{ onto the conjugacy classes of r-elements of } I_0(V) \text{ such that}
\]

\[
(3.4) \quad C_{I_0(V)}(s^*) \simeq C_{I_0(V^*)}(s^*).
\]

Proof. Suppose \(s \) is an \(r \)-element and decomposes as \((3.3)\). Then \(-1\) is not an eigenvalue of \(s \), so that \(\dim V^*_r(s) = m_r(s) d_r \) and \(\eta_r(s) = e^{m_r(s)} \) for \(\Gamma \neq X - 1 \). Thus

\[
m_{X-1}(s) = \dim V^* - \sum_{\Gamma \neq X-1} \dim V^*_r(s)
\]

and

\[
\eta_{X-1}(s) = (-1)^{(q-1)/2} \eta_{X-1}(s) \prod_{\Gamma \neq X-1} \eta_r(s),
\]

so that \(s \) is determined uniquely up to conjugacy in \(I(V^*) \) by its multiplicity function \(m_r(s) \). Moreover, \(s \in I_0(V^*) \) and the \(I(V^*) \)-class of \(s \) decomposes into one or two conjugacy classes of \(I_0(V^*) \) according as \(1 \) is or is not an eigenvalue of \(s \). Similar statements hold for \(r \)-elements of \(I(V) \). If \(V \) is symplectic, then the dual mapping induces a bijection of the conjugacy classes of \(r \)-elements of \(I_0(V^*) \) onto the conjugacy classes of \(r \)-elements of \(I_0(V) \). If \(V \) and \(V^* \) are even dimensional orthogonal spaces, then the dual mapping induces a bijection of the conjugacy classes of \(r \)-elements of \(I_0(V^*) \) onto the conjugacy classes of \(r \)-elements of \(I(V) \). Moreover, the \(I(V^*) \)-class of \(s \) is a single \(I_0(V^*) \)-class if and only if the \(I(V) \)-class of \(s^* \) is a single \(I_0(V) \)-class. So the dual mapping induces a bijection of the conjugacy classes of \(r \)-elements of \(I_0(V^*) \) and \(I_0(V) \). The isomorphism \((3.4)\) follows by [12, (3A)].

Given \(m \geq 1 \), let \(V \) be a symplectic or orthogonal space of dimension \(2em \) and type \(e^m \) if \(V \) is orthogonal. Let \(G = I_0(V) \) and \(G^* = I_0(V^*) \). By [12, (5.2)] \(G \) has a basic subgroup \(R \) of the form \(R_{m,0,0} \), and we denote by \(u^* \) a primary element of \(R \) and \(u \) a dual of \(u^* \) given by \((3D)\), so that \(|u^*| = r^2 \), \(u^* = u^*(\Gamma) \) for a unique \(\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2 \), and \(C_G(u^*) = C_{I(V)}(u^*) \simeq GL(m, eq^e) \). Moreover, the subgroup \(\langle u^* \rangle \) is uniquely determined up to conjugacy in \(I(V) \). Namely, if \(v^* \in G \) is an element of order \(r^2 \) and \(v^* = v^*(\Gamma) \) for a unique \(\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2 \), then \(\langle v^* \rangle \) and \(\langle u^* \rangle \) are conjugate in \(I(V) \). Let \(\mathcal{S} \) and \(\mathcal{S}^* \) be the sets of conjugacy classes of \(G \) and \(G^* \) of semisimple elements in the \(r \)-sections containing \(u^* \) and \(u \) respectively. Here the \(r \)-section containing \(u^* \) in \(G \), by definition, is the set of all elements in \(G \) whose \(r \)-part is conjugate with \(u^* \) in \(G \). Thus each class of \(\mathcal{S} \) has the form \(\langle h^* u^* \rangle \) for some semisimple \(r' \)-element \(h^* \in C_G(u^*) \). Define

\[
\mathcal{S}' = \{ [h^*]; (h^* u^*) \in \mathcal{S} \}, \quad \mathcal{S}'^* = \{ [s]; (su) \in \mathcal{S}^* \},
\]

where \([h^*]\) and \([s]\) are conjugacy classes of \(h^* \) and \(s \) in \(I(V) \) and \(I(V^*) \) respectively.
The dual mapping \(s \mapsto s^* \) from the semisimple elements of \(I_0(V^*) \) to the semisimple elements of \(I_0(V) \) induces a bijection \(f: [s] \mapsto [s^*] \) from \(\mathcal{S}^\ast \) onto \(\mathcal{S}^\ast \) such that

\[
C_{I_0(V^*)}(u^*, s^*) \approx C_{I_0(V)}(u, s).
\]

Proof. Let \([s] \in \mathcal{S}^\ast\), \(s^* \) a dual of \(s \) in \(G \), \(K = C_G(u^*) \), and \(K^* = C_G^\ast(u) \), so that \(K^* \) is a dual of \(K \). Then \(s \) and \(s^* \) have primary decompositions

\[
V = \sum_{\Gamma} V_{\Gamma}(s^*), \quad s^* = \prod_{\Gamma} s^*(\Gamma), \quad V^* = \sum_{\Gamma} V_{\Gamma}^*(s), \quad s = \prod_{\Gamma} s(\Gamma).
\]

Thus \(C_{I(V^*)}(s) = \prod_{\Gamma} C_{\Gamma}(s) \), where \(C_{\Gamma}(s) = C_{I(V^*)}(s)(\Gamma) \). Moreover, by (1.10)

\[
C_{\Gamma}(s) \simeq \begin{cases} I(V^*) & \text{if } \Gamma \in \mathcal{S}_0, \\ GL(m_{\Gamma}(s), e_{\Gamma} q^{\delta_{\Gamma}}) & \text{if } \Gamma \in \mathcal{S}_1 \cup \mathcal{S}_2. \end{cases}
\]

Let \(u_\Gamma \) be the restriction of \(u \) to \(V_{\Gamma}(s) \). Then \([V_{\Gamma}(s), u_\Gamma] = V_{\Gamma}(s) \) for \(\Gamma \neq X - 1 \) and \(u_\Gamma \in C_{\Gamma}(s) \). Thus

\[
m_{\Gamma}(s) = \begin{cases} e_{\Gamma} w_{\Gamma}(s) & \text{if } \Gamma \in \mathcal{S}_1 \cup \mathcal{S}_2, \\ 2e_{\Gamma} w_{\Gamma}(s) & \text{if } \Gamma \in \mathcal{S}_0 \text{ and } \dim V^* \text{ is even}, \\ 2e_{\Gamma} w_{\Gamma}(s) & \text{if } \Gamma = X + 1 \text{ and } \dim V^* \text{ is odd}, \\ 2e_{\Gamma} w_{\Gamma}(s) + 1 & \text{if } \Gamma = X - 1 \text{ and } \dim V^* \text{ is odd}, \end{cases}
\]

for some integer \(w_{\Gamma}(s) \), and \(\eta_{X+1}(s) = e_{w_{X+1}(s)} \), \(\eta_{\Gamma}(s) = e_{w_{\Gamma}(s)}^{m_{\Gamma}(s)} \) for \(\Gamma \in \mathcal{S}_1 \cup \mathcal{S}_2 \). Moreover, \(\eta_{X-1}(s) \) is determined by the equation

\[
\eta(V^*) = (-1)^{(q-1)/2} m_{X-1}(s) \prod_{\Gamma} \eta_{\Gamma}(s).
\]

Thus the type function \(\eta_{\Gamma}(s) \) is uniquely determined by the multiplicity function \(m_{\Gamma}(s) \), so that \([s] = [s']\) for \([s], [s'] \in \mathcal{S}^\ast \) if and only if \(m_{\Gamma}(s) = m_{\Gamma}(s') \) for all \(\Gamma \in \mathcal{S} \). It is clear that \(C_{K^*}(s) = C_{G^*}(u, s) = C_{G^*}(s)(u) \) and \(C_{K^*}(s) = \prod_{\Gamma} C_{G^*}(u, s) \), where \(C_{G^*}(u, s) = C_{G^*}(u_\Gamma) \) for \(\Gamma \in \mathcal{S}_1 \cup \mathcal{S}_2 \) and \(C_{G^*}(u, s) = C_{I_0(V^*)}(u_\Gamma) \) for \(\Gamma \in \mathcal{S}_0 \). By (3.7) and (3.8)

\[
C_{\Gamma}(u, s) \simeq GL(w_{\Gamma}(s), e_{\Gamma} q^{\delta_{\Gamma}})
\]

for all \(\Gamma \in \mathcal{S} \). Similarly, \(C_{I(V)}(s^*) = \prod_{\Gamma} C_{\Gamma}(s^*) \), where \(C_{\Gamma}(s^*) = C_{I(V^*)}(s^*)(\Gamma) \). Moreover

\[
C_{\Gamma}(s^*) = \begin{cases} I(V_{\Gamma}(s^*)) & \text{if } \Gamma \in \mathcal{S}_0, \\ GL(m_{\Gamma}(s^*), e_{\Gamma} q^{\delta_{\Gamma}}) & \text{if } \Gamma \in \mathcal{S}_1 \cup \mathcal{S}_2. \end{cases}
\]

By definition of \(s^* \), \(m_{\Gamma}(s^*) = m_{\Gamma}(s) \) except when \(\Gamma = X - 1 \) and \(V \) is symplectic, in which case, \(m_{\Gamma}(s^*) = m_{\Gamma}(s) - 1 \). Thus \(m_{\Gamma}(s^*) = \beta_{\Gamma} r_{\Gamma} w_{\Gamma}(s) \), where \(\beta_{\Gamma} = 1 \) or 2 according as \(\Gamma \in \mathcal{S}_1 \cup \mathcal{S}_2 \) or \(\Gamma \in \mathcal{S}_0 \). Let \(w_{\Gamma}(s) = \sum_{\beta} n_{\beta} r_{\beta} \) be the \(\beta \)-adic expansion of \(w_{\Gamma}(s) \), and \(c_{\beta} = (1, 1, \ldots, 1) \) (\(\beta \)-terms). Then a Sylow \(r \)-subgroup \(D(\Gamma) \) of \(C_{\Gamma}(s^*) \) is of the form \(\prod_{\beta} (R_{m_{\beta}, \alpha_{\beta}, \ldots, \alpha_{\beta}})^{n_{\beta}} \). Thus a Sylow \(r \)-subgroup \(P \) of \(C_{I(V)}(s^*) \) is of the form \(\prod_{\Gamma} D(\Gamma) \) as a subgroup of \(I(V) \), so that \(P \) has a primary element \(v^* \) and \(\langle v^* \rangle \) is conjugate with \(\langle u^* \rangle \) in \(I(V) \). Thus a conjugate of \(s^* \) in \(I(V) \) lies in \(K \). Replacing \(s^* \) by its conjugate, we may suppose \(s^* \in K \). So \(C_K(s^*) = C_G(u^*, s^*) = C_{G^*}(s^*)(u^*) \) and
if u^*_r is the restriction of u^* to $V_\Gamma(s^*)$, then $C_K(s^*) = \prod_{\Gamma} C_{\Gamma}(u^*, s^*)$, where $C_{\Gamma}(u^*, s^*) = C_{G}(s^*)(u^*_{\Gamma})$. Moreover,

\[(3.11) \quad C_{\Gamma}(u^*, s^*) \simeq GL(w_{\Gamma}(s), \varepsilon_{\Gamma}q^{m(\Gamma)}) ,\]

for all $\Gamma \in \mathcal{F}$. Since s^* is an r'-element and $s^* \in K$, it follows $(s^* u^*) \in \mathcal{F}$ and $[s^*] \in \mathcal{F}'$.

Conversely, given $[s^*] \in \mathcal{F}'$, suppose s^* decomposes as (3.6). Since $u^* \in C_G(s^*)$ and the restriction u^*_{Γ} of u^* to $V_\Gamma(s^*)$ lies in $C_{\Gamma}(s^*)$, it follows $m_{\Gamma}(s^*) = \beta_{\Gamma} \varepsilon_{\Gamma} w_{\Gamma}(s^*)$. Define $n_{\Gamma} = m_{\Gamma}(s^*)$ except when $\Gamma = X - 1$ and V is symplectic, in which case, $n_{\Gamma} = m_{\Gamma}(s^*) + 1$. In addition, define $\eta_{\Gamma} = \varepsilon_{\Gamma} m_{\Gamma}(s^*)$ for $\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2$, $\eta_{X+1} = \varepsilon_{\Gamma} w_{X+1}(s^*)$, and η_{X-1} is chosen so that (3.9) holds with $\eta_{\Gamma}(s)$ and $m_{\Gamma}(s)$ replaced by η_{Γ} and n_{Γ} respectively. Thus n_{Γ} and η_{Γ} satisfy the relation (1.11) for V^* with $m_{\Gamma}(s)$ and $\eta_{\Gamma}(s)$ replaced by n_{Γ} and η_{Γ}, so that a semisimple element, denote by s^*, exists in $I_0(V^*)$ such that $m_{\Gamma}(s) = n_{\Gamma}$ and $\eta_{\Gamma}(s) = \eta_{\Gamma}$. Such an element is determined uniquely up to conjugacy in $I(V^*)$. Thus $m_{\Gamma}(s)$ satisfy equation (3.8) with $w_{\Gamma}(s)$ replaced by $w_{\Gamma}(s^*)$. A similar proof to above shows that a Sylow r-subgroup of $C_{I(V^*)}(s)$ has a primary element conjugate with u in $I(V^*)$. We may suppose $u \in C_{I(V^*)}(s)$ and $(su) \in \mathcal{F}^*$, so that $[s] \in \mathcal{F}^*$. But $[s] = [s']$ for $[s], [s'] \in \mathcal{F}^*$ if and only if $m_{\Gamma}(s) = m_{\Gamma}(s')$ for all $\Gamma \in \mathcal{F}$, so the two maps induced by $s \mapsto s^*$ and $s^* \mapsto s$ are inverse each other and both are bijections. The isomorphism (3.5) follows by (3.10) and (3.11).

Remark. As shown in the proof of $(3E)$, if s^* is a semisimple r'-element of $I_0(V)$ such that a Sylow r-subgroup of $C_{I(V)}(s^*)$ acts fixed-point freely on V, then $m_{\Gamma}(s^*) = \beta_{\Gamma} \varepsilon_{\Gamma} w_{\Gamma}(s^*)$, so that a dual s of s^* is a well-defined semisimple r'-element of $I_0(V^*)$. Moreover, if u^* is a primary element of a Sylow r-subgroup of $C_{I(V)}(s^*)$ and u is its dual, then we may suppose u is a primary element of a Sylow r-subgroup of $C_{I(V^*)}(s)$ and $C_{I_0(V^*)}(u^*, s^*) \simeq C_{I_0(V^*)}(u, s)$.

$(3F)$. Given integer $m \geq 1$, let V be a symplectic or orthogonal space over \mathbb{F}_q of dimension $2em$ and $\eta(V) = e^m$ if V is orthogonal. Let $G = I_0(V)$, and B a block of G contained in $\mathcal{F}_r(G, (s))$ for some semisimple r'-element s of G^*. If a defect group R of B acts fixed-point freely on V, then R is conjugate in $I(V)$ with a Sylow r-subgroup of $C_G(s^*)$, where s^* is a dual of s in G.

Proof. Since R is radical in $I(V)$, it has a primary element z^*. Let $K = C_G(z^*)$ and K^* its dual. Then $z^* = z^*(\Gamma)$ for a unique $\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2$, $K = C_{I(V)}(z^*) \simeq GL(m, \varepsilon q^s)$, and K^* is embedded as a regular subgroup in G^*. Suppose (z^*, B_z^*) is a major subsection associated with B_z, in the sense of [6], and $B_z^* \subseteq \mathcal{F}_r(K, (t))$. Then s and t are conjugate in G^* by $(3C)$ and R is a defect group of B_z^*. Replace s by a conjugate we may suppose $s = t$, so that R is conjugate with a Sylow r-subgroup of $C_{K^*}(s)^*$ in K by a result of [11, §5]. Let s^* be a dual of s and ρ an element of order r^s in $Z(K^*)$. Such an element ρ exists since $K \simeq K^*$. Thus $K^* \leq C_{G^*}(\rho)$ and $\delta_{\Gamma} = e$ for all $\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2$ with $m_{\Gamma}(\rho) \neq 0$. By (1.9) and (1.10) $C_{G^*}(\rho) = K^*$, so that ρ is a primary element of $O_r(Z(K^*))$. Thus (ρ) is conjugate in $I(V^*)$ with the subgroup generated by a dual of z^* given by $(3D)$. Replacing ρ by ρ^k for some integer k, we may suppose ρ is a dual of z^*. Since s lies in the r-section containing ρ, we may suppose s^* lies in the r-section containing z^*.
and \(C_K(s^*) \cong C_K(s) \) by \((3E)\). By \((3.10)\) and \((3.11)\) \(C_K(s^*) \) and \(C_K\cdot(s)* \) are conjugate in \(K \). Thus \(R \) is conjugate with a Sylow \(r \)-subgroup of \(C_K(s^*) \).

We may suppose \(R \) is a Sylow \(r \)-subgroup of \(C_K(s^*) \). Let \(P \) be a Sylow \(r \)-subgroup of \(C_{(V)}(s^*) \) containing \(R \) and \(u^* \) a primary element of \(P \). So \(u^* \in Z(P) \), \(R \leq C_P(z^*) \leq C_K(s^*) \), and \(R = C_P(z^*) \) since \(R \) is Sylow in \(C_K(s^*) \). Thus \(u^* \in Z(R) \) and \(u^* \) is a primary element of \(R \). So \(\langle z^* \rangle = \langle u^* \rangle \leq Z(P), P = C_P(z^*) = R \), and \((3F)\) holds.

Let \(\mathcal{S}' \) be the subsets of polynomials in \(\mathcal{S} \) whose roots have \(r' \)-order. Given \(\Gamma \in \mathcal{S}' \), we shall define \(G_\Gamma, R_\Gamma, C_\Gamma, \theta_\Gamma, \) and \(s_\Gamma \) as follows: Let \(V_\Gamma \) denote a symplectic or orthogonal space of dimension \(2e_\Gamma \delta_\Gamma \) over \(\mathbb{F}_q \) and of type \(e_\Gamma^\xi \) or \(\varepsilon \) according as \(\Gamma \in \mathcal{S}_1 \cup \mathcal{S}_2 \) or \(\Gamma \in \mathcal{S}_0 \) if \(V_\Gamma \) is orthogonal. Thus \(I(V_\Gamma) \) has a primary element \(s_\Gamma \) with a unique elementary divisor \(\Gamma \) of multiplicity of \(\beta_\Gamma e_\Gamma \) and \(I(V_\Gamma) \) has a basic subgroup \(R_\Gamma \) of form \(R_{m_\Gamma, \alpha_\Gamma, 0} \) by \([12, (1.12) \) and \((5.2)\)\]. Let \(G_\Gamma = I(V_\Gamma), G_\Gamma^0 = I_0(V_\Gamma), \) and \(C_\Gamma = C_G(\Gamma) \). Then \(s_\Gamma^* \in G_\Gamma^0 \) and \(C_\Gamma \cong \text{GL}(m_\Gamma, q^\delta_\Gamma) \), so that a Coxeter torus \(T_\Gamma \) of \(C_\Gamma \) has order \(q^{m_\Gamma \delta_\Gamma} - 1 \). The dual \(T_\Gamma^* \) is embedded as a regular subgroup of \(C_\Gamma^* \), and in turn, \(C_\Gamma^* \) is embedded as a regular subgroup of \(G_\Gamma^0 \). We claim that there exists an element \(s_\Gamma \) in \(T_\Gamma^* \) such that \(C_{C_\Gamma}(s_\Gamma) = T_\Gamma^* \) and as an element of \(G_\Gamma^0 \), \(s_\Gamma \) and \(s_\Gamma^* \) are dual each other in the sense of \((3E)\). Indeed

\[
C_{G_\Gamma}(s_\Gamma) = \begin{cases} I(V_\Gamma) & \text{if } \Gamma = X \pm 1, \\
\text{GL}(\varepsilon_\Gamma, e_\Gamma q^{\delta_\Gamma}) & \text{if } \Gamma \neq X \pm 1,
\end{cases}
\]

so that a Sylow \(r \)-subgroup of \(C_{G_\Gamma}(s_\Gamma) \) acts fixed-point freely on \(V_\Gamma \). By the remark of \((3E)\) a dual \(s_\Gamma \) of \(s_\Gamma^* \) exists in \(G_\Gamma^0 \) and

\[
C_{G_\Gamma^0}(s_\Gamma) = \begin{cases} \\
\text{GL}(\varepsilon_\Gamma, e_\Gamma q^{\delta_\Gamma}) & \text{if } \Gamma \neq X \pm 1, \\
\text{SO}^e(2e, q) & \text{if } \Gamma = X \pm 1 \text{ and } V_\Gamma \text{ is orthogonal}, \\
\text{SO}(2e + 1, q) & \text{if } \Gamma = X - 1 \text{ and } V_\Gamma \text{ is symplectic}, \\
\langle w, 1 \times \text{SO}^e(2e, q) \rangle & \text{if } \Gamma = X + 1 \text{ and } V_\Gamma \text{ is symplectic},
\end{cases}
\]

where \(w \) is an element in \(\text{SO}(V_\Gamma) \) such that \(w^2 = 1 \times \text{SO}^e(2e, q) \), and \(1 \) is the identity matrix of size \(1 \). Let \(R_\Gamma^* \) be a Sylow \(r \)-subgroup of \(C_{G_\Gamma^0}(s_\Gamma) \), \(C_\Gamma^* = C_{G_\Gamma^0}(s_\Gamma) \), and \(T_\Gamma^* = C_{C_\Gamma^*}(s_\Gamma) \). Then \(s_\Gamma \in T_\Gamma^* \) and \(T_\Gamma^* = C_{C_{G_\Gamma^0}(s_\Gamma)}(R_\Gamma^*) \). Thus \(T_\Gamma^* \) has order \(q^{e_\Gamma \delta_\Gamma} - 1 \). But \(e_\Gamma \delta_\Gamma = m_\Gamma e_\Gamma r^{ar} \), \(r \) divides both \(q^{m_\Gamma e_\Gamma r^{ar} - 1} \) and \(q^{e_\Gamma \delta_\Gamma} - 1 \), so \(q^{e_\Gamma \delta_\Gamma} = q^{m_\Gamma e_\Gamma r^{ar}} \) and \(R_\Gamma^* \) is a Sylow \(r \)-subgroup of \(G_\Gamma^0 \). In particular, \(R_\Gamma^* \) is cyclic of order \(r^{a+ar} \) and has type \(R_{m_\Gamma, \alpha_\Gamma, 0} \) as a subgroup of \(I(V_\Gamma^*) \). Let \(R_\Gamma^* \) be the Sylow \(r \)-subgroup of \(T_\Gamma^* \). Then \(R_\Gamma^* \) is cyclic of order \(r^{a+ar} \) and there exists \(g \in I(V_\Gamma^*) \) such that \((R_\Gamma^*)^g = R_\Gamma^* \), so that \((C_\Gamma^*)^g = C_\Gamma^* \). Thus \((T_\Gamma^*)^hT_\Gamma^* \), and \(h^{-1}g^{-1} \in T_\Gamma^* \) for some \(h \in C_\Gamma^* \). Thus \(s_\Gamma^* \) is a dual of \(s_\Gamma^* \) in \(G_\Gamma^0 \) and \(C_{C_\Gamma^*}(s_\Gamma^* \) = \(T_\Gamma^* \). We may denote \(s_\Gamma^h \) by \(s_\Gamma \) and then the claim holds. By \((3E)\) \(s_\Gamma \) is uniquely determined by \(\Gamma \) up to conjugacy in \(I(V_\Gamma^*) \).

Let \(\phi_\Gamma \) be the character of \(T_\Gamma \) corresponding to \(s_\Gamma \), and let

\[
\theta_\Gamma = \pm R_{G_\Gamma^0}(\phi_\Gamma) = \pm R_{G_\Gamma^0}(s_\Gamma),
\]

where the sign is chosen so that \(\theta_\Gamma \) is an irreducible character of \(C_\Gamma \). The
block \(b_T \) of \(C_T \) containing \(\theta_T \) then has defect group \(R_T \) by [11, (4C)] and the Brauer pair \((R_T, b_T) \) of \(G_T^0 \) has the label \((R_T, s_r, -) \).

(3G). Let \(N_T = N_{G_T}(R_T) \), and \(N(\theta_T) \) the stabilizer of \(\theta_T \) in \(N_T \).

(a) \((N(\theta_T): C_T) = \beta T \). In particular, \(|\text{Irr}^0(N(\theta_T), \theta_T)| = \beta T \) and \(R_T \) is a defect group of \(b_T^{G_T} \).

(b) Let \(\Gamma, \Gamma' \in \mathcal{F} \) such that \(G_T = G_{\Gamma'} \) and \(R_T = R_{\Gamma'} \), so that \(C_T = C_{\Gamma'} \) and \(N_T = N_{\Gamma'} \). Let \(\theta_T \) and \(\theta_{\Gamma'} \) be the canonical characters of \(b_T \) and \(b_{\Gamma'} \), respectively. Then \(b_T = b_{\Gamma'} \) for some \(\tau \in N_T \) if and only if \(s_T \) and \(s_{\Gamma'} \) are conjugate in \(I(V_T^\ast) \), where \(V_T^\ast \) is the underlying space of \(G_T^{b_T} \).

Proof. (a) It suffices to show \((N(\theta_T): C_T) = \beta T \) since \(N_T/C_T \) is cyclic of order \(2\epsilon T \). If \(\Gamma \in \mathcal{F}_2 \), then \(C_T = T_T \), \(\theta_T = \phi_T \), and \(\theta_T \) is either the identity character or the character of order 2 of \(T_T \). Thus \(N(\theta_T) = N_T \) and \((N(\theta_T): C_T) = 2\epsilon T \).

Suppose \(\Gamma \in \mathcal{F}_2 \cup \mathcal{F}_3 \), so that \(T_T = C_{G_T}(r) \) for some \(r \in T_T \) and \(T_T = C_{G_T}(r) \) for any generator \(r \) of \(R_T \). Let \(\Delta \) be the unique elementary divisor of \(\mu r \) and \(N(T_T) = N_{G_T}(r) \). Following [12, p. 149], if \(\Delta \in \mathcal{F}_3 \), we have \(N(T_T) = \langle x, t \rangle \), where \(x : t \mapsto t^a \) for \(t \in T_T \). Here \(x \) has order \(2m_{T_T}T_T \) in \(N(T_T)/T_T \) and \(\sigma_{m_{T_T}}T_T \) inverts \(T_T \). If \(\Delta \in \mathcal{F}_2 \), we have \(N(T_T) = \langle \beta, \gamma, T_T \rangle \), where \(\beta : t \mapsto t^a \), \(\gamma : t \mapsto t^{-1} \) for \(t \in T_T \). Here \(\beta \) and \(\gamma \) have order \(m_{T_T}T_T \) and \(2 \) respectively in \(R_T \). Moreover, \(N_T = N(T_T) \).

Let \(N_T \) act on the pairs \((T, \phi) \) by conjugation and let \([T, \phi] \) be the \(C_T \)-orbit of the pair \((T, \phi) \), where \(T \) is a Coxeter torus of \(C_T \) and \(\phi \) is an irreducible character of \(T \). Then \(N_T \) induces an action on the \(C_T \)-orbits and the \(N_T \)-orbit of \([T_T, \phi_T] \) consists of \(\{[T_T, \phi_T^{t\epsilon T}] | 1 \leq t \leq m_{T_T}T_T \} \). Moreover, we claim that for \(\tau \in N_T \), \(\phi \in N(T_T) \), \([T_T, \phi_T] = [T_T, \phi_T^\tau] \) if and only if \((R_T^G(\phi_T^\tau))^{t\epsilon T} = R_T^G(\phi_T^\tau) \). Indeed given \(\tau \in N_T \), then \(T_T^{\epsilon T} = T_T^{t\epsilon T} \) for some \(\epsilon T \in C_T \) and \((R_T^G(\phi_T^{t\epsilon T}))^{t\epsilon T} = (R_T^G(\phi_T^{t\epsilon T}))^{t\epsilon T} = R_T^G(\phi_T^{t\epsilon T}) \). Thus \([T_T, \phi_T] = [T_T, \phi_T^\tau] \) if and only if \((R_T^G(\phi_T)^{t\epsilon T} = R_T^G(\phi_T^\tau) \). Thus the claim holds. In particular, \(N(\theta_T) \) is the stabilizer of \([T_T, \phi_T] \) in \(N_T \).

The group \(C_T \) acts on the pairs \((T, \phi) \) by conjugation. Let \([T^*, s] \) be the conjugacy \(C_T \)-class of \((T, \phi) \). By [18, (7.5)] the \(C_T \)-classes \([T, \phi] \) are in bijection with the \(C_T \)-classes \([T^*, s] \) and if \([T, \phi] \) corresponds to \([T^*, s] \), then \(R_T^G(\phi) = R_T^G(s) \) and \([T, \phi^k] \) corresponds to \([T^*, s^k] \) for any integer \(k \). Let \(R_T^* \) be the Sylow \(r \)-subgroup of \(C_T \) and \(N_T^* = N_I(V_T^*) \) be its normalizer in \(I(V_T^*) \). Then \(|R_T^*| = r^{\ast + \epsilon T} \), \(R_T^* \leq Z(C_T) \), and \(R_T^* \) has form \(R_{m_{T_T}T_T, 0} \) as a subgroup of \(I(V_T^*) \). So \(C_T = C_{I(V_T^*)}(R_T^*) \). Let \(N(T_T^*) = N_I(V_T^*)(T_T^*) \). Then \(N_T^* = N(T_T^*)C_T^* \) and \(N_T^* \) acts on the pairs \((T^*, s) \) by conjugation, so that \(N_T^* \) induces an action on classes \([T^*, s] \). If \(G_T \) is a symplectic group, then \(I(V_T^*) \simeq 0(\phi, T_T, T_T, q) \), and the action of \(N(T_T^*) \) on \(T_T^* \) is similar to that of \(N(T_T) \) on \(T_T \), namely for \(g \in N(T_T^*) \), \(g \) acts on \(T_T^* \) by \(g : t \mapsto t^{q^k} \) where \(t \in T_T^* \) and \(1 \leq l \leq m_{T_T}T_T \). If \(G_T \) is an orthogonal group, then \(I(V_T^*) \simeq 0(\phi, T_T, T_T, q) \), and the action of \(N(T_T^*) \) on \(T_T^* \) is similar to that of \(N(T_T) \) on \(T_T \). Thus the \(N_T^* \)-orbit of \([T_T^*, s_T] \) consists of \(\{[T_T^*, s_T^{q^k}] \} \), where \(1 \leq k \leq m_{T_T}T_T \) and the elements in this orbit are in bijection with that in the \(N_T \)-orbit of \([T_T, \phi_T] \). So \((N_T : N(\theta_T)) = (N_T^* : N([T_T^*, s_T])) \), where \(N([T_T^*, s_T]) \)
is the stabilizer of \([T^*_r, s_r]\) in \(N^*_r\). Let \(H^* = N([T^*_r, s_r])\) or \(N([T^*_r, s_r]) \cap I_0(V^*_r)\) according as \(V_r\) is orthogonal or symplectic. Then \(H^* \geq C^*_r\) and
\(|N(\theta^*)| = |H^*|\) since \(|N_r| = |N^*_r|\) or \(\frac{1}{2}|N^*_r|\) according as \(V_r\) is orthogonal or symplectic. Moreover, \((N(\theta^*_r) : C^*_r) = (H^*_r : C^*_r)\).

Now fix the \(C^*_r\)-classes \([T^*_r, s_r]\). Then it is clear that \(C^*_r\) and \(H^*\) act transitively on the class and so
\((H^* : N_{H^*}(T^*_r, s_r)) = (C^*_r : N_{C^*_r}(T^*_r, s_r))\), where \(N_{H^*}(T^*_r, s_r)\) and \(N_{C^*_r}(T^*_r, s_r)\) are the stabilizers of the pair \((T^*_r, s_r)\) in \(H^*\) and \(C^*_r\) respectively. But \(H^* \geq C^*_r\), \(N_{C^*_r}(T^*_r, s_r) = T^*_r\), and
\((H^*_r : T^*_r) = (H^*_r : C^*_r)(C^*_r : T^*_r) = (H^* : N_{H^*}(T^*_r, s_r))(N_{H^*}(T^*_r, s_r) : T^*_r)\),
so
\((H^* : C^*_r) = (N_{H^*}(T^*_r, s_r) : T^*_r)\). If \(V^*_r\) is orthogonal, then \(C_{I(V^*_r)}(s_r) = C_{I(V^*_r)}(s_r)\) by \(\Gamma \in F_1 \cup F_2\). Thus in any case \(N_{H^*}(T^*_r, s_r) \leq I_0(V^*_r)\). Let \(K^* = C_{I(V^*_r)}(s_r)\). Then \(K^* \simeq GL(e_T, e_T^d)\) and \(N_{H^*}(T^*_r, s_r) = N_{K^*}(T^*_r)\). Since \(T^*_r\) is a Coxeter torus of \(K^*\), \((N_{K^*}(T^*_r) : T^*_r^c) = e_T\) and then \((N(\theta^*_r) : C^*_r) = e_T\).

(b) Let \(\theta_\tau = r\mathbf{R}T^{r}_\tau(s_r)\). Suppose \(\theta_\tau = \theta_T\) for some \(\tau \in N^*_r\). Then \([T^*_r, \theta_T]\) corresponds to \([T^*_r, s_{_\tau^n}]\) for some \(n \in N(T^*_r)\) since the elements in the \(N^*_r\)-orbit of \([T^*_r, s_r]\) and \(N^*_r = N(T^*_r)C^*_r\). Thus \(\theta_\tau = r\mathbf{R}T^{r}_\tau(s_{_\tau^n})\) and \([T^*_r, s_{_\tau^n}] = [T^*_r, s_r]\). So \(s_r\) is conjugate with \(s_\tau^n\) in \(I(V^*_r)\). Conversely, suppose \(s_r\) and \(s_\tau^n\) are conjugate in \(I(V^*_r)\). Since \(T^*_r\) and \(T^*_r\) are Coxeter tori of \(C^*_r\), \(T^*_r \cap s_r = T^*_r \cap s_\tau^n\) and \(s_r = s_\tau^n\) for some \(c \in C^*_r\) and \(w \in I(V^*_r)\). If \(\Gamma \in F_0\), then \(C^*_r = T^*_r = T^*_r\) and \(s_r = s_\tau^n\) so that both \(s_r\) and \(s_\tau^n\) are elements of \(T^*_r\) of order 1 or 2 according as \(\Gamma = X - 1\) or \(\Gamma = X + 1\). Thus \(s_r = s_\tau^n\) and \(\theta_\tau = \theta_T\). Suppose \(\Gamma \in F_1 \cup F_2\), so that \(K^* = C_{I(V^*_r)}(s_r) = e_T^{c-1}\) and hence \(T^*_r, T^*_r^{cw-1}\) are Coxeter tori of \(K^*\). So \(T^*_r^{gw} = T^*_r^{cw-1}\) for some \(g \in K^*, T^*_r^{gw} = T^*_r^{cw-1}\), and \(gw \in N^*_r\). It follows that
\([T^*_r, s_r]^{gw} = [T^*_r, s_r]^{gw} = [T^*_r, s_r]^{cw-1}, s_r^{c-1}] = [T^*_r, s_r]\). Since \(gw \in N^*_r\), \([T^*_r, s_r]^{gw}\) corresponds to \([T^*_r, \theta_T]\) for some \(\tau \in N^*_r\) and then \(\theta_\tau = \theta_T\). This completes the proof.

Remark. Let \(G_T\) be an orthogonal group, and \(N_0(\theta_T) = N(\theta_T) \cap G_0^0\). By \([12, (6B)](N(\theta_T) : N_0(\theta_T) = \beta_T\).

For each \(\alpha \geq 0\) and \(m \geq 0\), let \(V^*_m,0,0\) denote a symplectic or orthogonal space over \(F_q\) of dimension \(2mer^\alpha\) and type \(e^m\) if \(V^*_m,0,0\) is orthogonal. Thus \(I(V^*_m,0,0)\) has a basic subgroup of form \(R_{m,0,0}\) (see §2).

(3H). Let \(G = I(V^*_m,0,0), R = R_{m,0,0}\) a basic subgroup of \(G\), \(b\) a block of \(C_R(G)\) with defect group \(R\), and \(\theta\) the canonical character of \(b\). If \(N(\theta)\) is the stabilizer of \(\theta\) in \(N\), and \((N(\theta) : C_R(G))\) is cyclic of order \(2er^\alpha\).

Proof. Let \(C = C_R(G), N = N_G(G), \) and \(G_0 = I_0(V^*_m,0,0)\). Then \(C = C_R(G)\) and \(N/C\) is cyclic of order \(2er^\alpha\).

Since \(C \simeq GL(m, e^\alpha r^\alpha)\), it follows by \([11, (4B)\) and \((4C)\) that \(\theta = e_T R_T^\alpha(\phi)\),
where \(e_T = \pm 1\), \(T\) is a Coxeter torus of \(C\) and \(\phi\) is an \(r\)-rational irreducible character of \(T\). Moreover, the dual \(T^*\) is embedded as a regular subgroup of
C*, and C* is embedded as a regular subgroup of G*. There is an element s of T* such that s corresponds to \(\phi \) and \(T^* = C_{C*}(s) \). In particular, if \(\phi^2 = 1 \), then \(s^2 = 1 \), \(T^* = C^* \), \(m = 1 \), and \(\theta = \phi \). Thus \(N = N(\theta) \) and \((N(\theta) : C)_r = (N : C)_r = 1 \), so that \(\alpha = 0 \). In this case \(R = R_{x\pm 1} \), and \(\theta = \theta_{x\pm 1} \) (see [12, p. 148]).

Suppose \(\phi^2 \neq 1 \). Then as an element of \(C^* \), s has a unique elementary divisor \(\Delta \) with multiplicity 1 since \(T^* = C_{C^*}(s) \) is the Coxeter torus of \(C^* \). Regard s as an element of \(G_0^* \). By [12, (9A) and (9.2)] there is a unique \(\Gamma \in F_1 \cup F_2 \) such that the multiplicity of \(\Gamma \) in s is \(e_\Gamma r^l \) and \(e_\Gamma r^ld_\Gamma = 2mer^a \) for some \(l \geq 0 \). So \(C_{G_0^*}(s) \cong GL(e_\Gamma r^l, e_\Gamma q^{d_\Gamma}) \). A similar proof to that of (3G)(a) shows that \((N(\theta) : C) = (N_{C_{G_0^*}(T^*)}(T^*) : T^*) = e_\Gamma r^l \). Thus \(l = 0 \) and \(e_\Gamma d_\Gamma = 2mer^a \) since \((N(\theta) : C)_r = 1 \). But \((m, r) = 1 \) by [11, (4B)]. It follows that \(m = m_\Gamma, \alpha = \alpha_\Gamma \), and \(G = G_\Gamma, R = R_\Gamma, \theta = \theta_\Gamma \). This completes the proof.

Given \(\Gamma \in F' \) and \(\gamma \geq 0 \). Let

\[
V_{\Gamma, \gamma} = V_\Gamma \perp V_\Gamma \perp \cdots \perp V_\Gamma,
\]

where there are \(r^\gamma \) terms \(V_\Gamma \) on the right-hand side. Then if \(V_\Gamma \) is orthogonal, \(V_{\Gamma, \gamma} \) has type \((e_\Gamma)^{\gamma r^l} = e_\Gamma^{\gamma l} \) or \(r^l = e \) according as \(\Gamma \in F_1 \cup F_2 \) or \(\Gamma \in F_0 \).

(31). Let \(G = I(V_{\Gamma, \gamma}) \), \(R = R_{m_\Gamma, \alpha_\Gamma, \gamma} \) a basic subgroup of \(G \), and \(C = C_G(R) \). Then \(C = C_\Gamma \otimes I_\gamma \), where \(I_\gamma \) is the identity matrix of order \(r^l \). The irreducible character \(\theta = \theta_\Gamma \otimes I_\gamma \), of \(C \) defined by \(\theta(c \otimes I_\gamma) = \theta_\Gamma(c) \) for \(c \in C_\Gamma \) is then a character of defect 0 of \(CR/R \), and \(|\text{Irr}^0(N(\theta), \theta)| = \beta_{\Gamma r^l} \Gamma \). Proof. The proof is essentially the same as that of (3A), except that the automorphisms on \(C = C_\Gamma \otimes I_\gamma \) induced by \(N(R) \) have order \(2er^a r^l \), and their actions are the same as the automorphisms on \(C_\Gamma \) induced by \(N_\Gamma/C_\Gamma \).

Remark. Suppose \(G = I(V_{\Gamma, \gamma}) \) is an orthogonal group. Let \(G_0 = I_0(V_{\Gamma, \gamma}) \) and \(N_0(\theta) = N(\theta) \cap G_0 \). Then \(|N(\theta) : N_0(\theta)| = \beta_{\Gamma} \) and for each \(\psi \in \text{Irr}^0(N(\theta), \theta) \) the restriction \(\psi|_{N_0(\theta)} \) of \(\psi \) to \(N_0(\theta) \) is irreducible. Indeed let \(N^0 = \{g \in N : [g, Z(R)] = 1 \} \). Then \(N^0 \leq N_0(\theta) \) and in the notation of (3A), \(N(\theta) = N(\theta) \) and \(N(\theta)/N^0 \cong N(\theta)/C_\Gamma \), where \(\theta \) is the unique irreducible character of \(N^0 \) covering \(\theta \) and having defect 0 as a character of \(N^0/R \). The remark of (3G) implies \(|N(\theta) : N_0(\theta)| = \beta_{\Gamma} \). Since \(\psi \) covers \(\theta \) and \(N(\theta)/N^0 \) is cyclic, \(\psi|_{N^0} = \theta \) is irreducible, so that \(\psi|_{N_0(\theta)} \) is irreducible. This completes the proof.

Given \(\Gamma \in F' \), and \(d \geq 0 \). Let \(G = I(V_{\Gamma, d}) \), and \(R = R_{m_\Gamma, c_\Gamma, \gamma} \) a basic subgroup of \(G \), where \(e = (c_1, c_2, \ldots, c_\ell) \), and \(\gamma + c_1 + c_2 + \cdots + c_\ell = d \). Then \(C = C_G(R) = C_\Gamma \otimes I_\gamma \otimes I_e \), where \(I_\gamma \) and \(I_e \) are the identity matrices of order \(r^l \) and \(r^{c_1+c_2+\cdots+c_\ell} \) respectively. The irreducible character of \(C \) defined by

\[
\theta(c \otimes I_\gamma \otimes I_e) = \theta_\Gamma(c)
\]

for \(c \in C_\Gamma \) is a character of defect 0 of \(CR/R \). We shall say that the pair \((R, \theta)\) is of type \(\Gamma \). If \((R, \theta)\) is of type \(\Gamma \), then \(\theta \) is a canonical character of a block \(b \) of \(C \) with defect group \(Z(R) \), and the Brauer pair \((R, b)\) of \(G \) is also a Brauer pair of \(G_0 = I_0(V_{\Gamma, d}) \) since \(C = C_{G_0}(R) \). Let \(D \) be
the base subgroup of \(R = R_{\text{mr}, \text{ar}, \gamma} \). Then each component \(Q \) of \(D \) is of the form \(R_{\text{mr}, \text{ar}, \gamma} \), so that by the remark of (1C) \(Q \) contains a normal subgroup \(Q' \) such that \(C_{\text{mr}}(V_{\text{mr}, \text{ar}, \gamma})(Q') = C_{\text{mr}}(V_{\text{mr}, \text{ar}, \gamma})(Q') = \prod_{i=1}^{r'} C_i \) is a regular subgroup of \(I_0(V_{\text{mr}, \text{ar}, \gamma}) \), where \(V_{\text{mr}, \text{ar}, \gamma} \) is the underlying space of \(Q \) and \(C_i \simeq \text{GL}(m_i, \varepsilon_{q^{r'}}) \) for all \(i \). Let \(R' \) be the subgroup of \(D \) with each component \(Q \) of \(D \) replaced by \(Q' \). Then \(R' \) is a normal subgroup of \(R \) and \(C' = C_{\text{mr}}(R') = \prod_{i=1}^{r'} C_i \), where \(C_i \simeq \text{GL}(m_i, \varepsilon_{q^{r'}}) \) for all \(1 \leq i \leq r' \). Thus \(C' \) is a regular subgroup of \(I_0(V_{\gamma, d}) \) and \(C \leq C' \), so that \(C'* \) is embedded as a regular subgroup of \(I_0(V_{\gamma, d})^* \). Now we may suppose \(C_i = C^*_i \) and \(s_i \in C^*_i \) for all \(i \). Let

\[
(3.14) \quad x_\Gamma = s_\Gamma \times s_\Gamma \times \cdots \times s_\Gamma \quad \text{(r times)}
\]

be an element of \(C'* \) and \(x_\Gamma^* \) a dual of \(x_\Gamma \) in \(G \). Then as an element of \(G \), \(x_\Gamma^* \) has a unique elementary divisor \(\Gamma \) of multiplicity \(\beta_{q^r} r^d \) and type \(\eta_\Gamma(x_\Gamma^*) = \eta(V_{\gamma, d}) \). The subgroup \(C^*_i \otimes I_\gamma \otimes I_\epsilon \) can be regarded as a diagonal subgroup of \(C'* \), so that \(s_i \otimes I_\gamma \otimes I_\epsilon \in C'* \) and \(x_\Gamma \) is conjugate with \(s_i \otimes I_\gamma \otimes I_\epsilon \) in \(I(V^*) \). Thus \((R, b) \) is labeled by \((R, x_\Gamma, -) \). The Brauer pair \((R, b) \) of \(G \) will also be denoted by \((R, \theta) \).

(3J). (a) Let \(G = I(V) \), \(R \) a basic subgroup of \(G \), \((R, \varphi) \) a weight of \(G \), and \(\theta \) an irreducible character of \(C_{\text{mr}}(R) \) covered by \(\varphi \). Then \((R, \theta) \) is of type \(\Gamma \) for some \(\Gamma \in \mathcal{F}' \).

(b) The pair \((R, \theta) \) of \(G \) with type \(\Gamma \) is uniquely determined by \(\Gamma \) up to conjugacy in \(N = N_G(R) \), that is, if \((R, \theta') \) is another pair with type \(\Gamma \), then \(\theta' = \theta^n \) for some \(n \in N \).

Proof. (a) Suppose \(V = V_{m, \alpha, \gamma, \epsilon} \) and \(R = R_{m, \alpha, \gamma, \epsilon} \), where \(\epsilon = (c_1, \ldots, c_l) \). Let \(G_1 = I(V_{m, \alpha, 0}) \), \(R_1 = R_{m, \alpha, 0} \) a basic subgroup of \(G_1 \), \(C_1 = C_{G_1}(R_1) \), and \(N_1 = N_{G_1}(R_1) \). Then \(C_1 \simeq \text{GL}(m, \varepsilon_{q^{r'}}) \) and \(C = C_{G}(R) = C_1 \otimes I_\gamma \otimes I_\epsilon \). Thus \(\theta \) has the form \(\theta_1 \otimes I_\gamma \otimes I_\epsilon \), where \(\theta_1 \) is a character of \(C_1 \). Since \(\theta \) has defect 0 as a character of \(C/Z(R) \), \(\theta_1 \) has defect 0 as a character on \(C_1/R_1 \). The block of \(C_1 \) containing \(\theta_1 \) has defect group \(R_1 \).

Let \(R_{m, \alpha, \gamma} \) a basic subgroup of \(I(V_{m, \alpha, \gamma}) \), \(N_{m, \alpha, \gamma} \) and \(C_{m, \alpha, \gamma} \) the normalizer and centralizer of \(R_{m, \alpha, \gamma} \) in \(I(V_{m, \alpha, \gamma}) \). Then \(C_{m, \alpha, \gamma} = C_1 \otimes I_\gamma \) and \((\theta_1 \otimes I_\gamma)(c \otimes I_\gamma) = \theta_1(c) \) for \(c \in C_1 \) is an irreducible character of \(C_{m, \alpha, \gamma} \). By (2.5)

\[
N/R \simeq (N_{m, \alpha, \gamma}/R_{m, \alpha, \gamma}) \otimes N_{S_{\mu}}(A_\epsilon),
\]

where \(u = r^{c_1 + \cdots + c_l} \). If \(N_{m, \alpha, \gamma} = \{ g \in N_{m, \alpha, \gamma} : [g, Z(R_{m, \alpha, \gamma})] = 1 \} \), then \(N_{m, \alpha, \gamma}/N_{m, \alpha, \gamma} \simeq N_1/C_1 \). Let \(\varphi = I(\psi) \) for some \(\psi \in \text{Irr}^\theta(N(\theta); \theta) \), and \(N(\theta_1 \otimes I_\gamma) \) be the stabilizer of \(\theta_1 \otimes I_\gamma \) in \(N_{m, \alpha, \gamma} \). Then

\[
N(\theta)/R \simeq (N(\theta_1 \otimes I_\gamma)/R_{m, \alpha, \gamma}) \times \text{GL}(c_1, r) \times \cdots \times \text{GL}(c_l, r).
\]

But \(\psi \) is a character of defect 0 of \(N(\theta)/R \), so it covers an irreducible character \(\psi_0 \) in \(\text{Irr}^\theta(N(\theta_1 \otimes I_\gamma), \theta_1 \otimes I_\gamma) \). Same proof as that of (3A) shows that \(N^0_{m, \alpha, \gamma} \leq N(\theta_1 \otimes I_\gamma) \) and \(N^0_{m, \alpha, \gamma} \) has a unique irreducible character \(\theta \) covering \(\theta_1 \otimes I_\gamma \) and having defect 0 as a character of \(N^0_{m, \alpha, \gamma}/R_{m, \alpha, \gamma} \). Moreover, \(N(\theta_1 \otimes I_\gamma) = \cdot \)
$N(\theta)$ and $N(\theta)/N_{m,a,\gamma}^{0} \simeq N(\theta)/C_1$, where $N(\theta)$ is the stabilizer of θ in N_1. Thus $\psi_0 \in \text{Irr}^0(N(\theta), \theta)$ and $\psi_0(1) = \psi(1)$ since $N_{m,a,\gamma}/N_{m,a,\gamma}^{0}$ is cyclic. By (3.1) $(N(\theta): N_{m,a,\gamma}^{0}) \Gamma_{r} = 1$ and hence $(N(\theta): C_1)_{r} = 1$. It follows by (3H) that $G_1 = G_{\Gamma}, R_1 = R_{\Gamma}$, and $\theta_1 = \theta_{\Gamma}$ for some $\Gamma \in \mathcal{T}$. Thus (R_1, θ_1) is labeled by $(R_1, s_\Gamma, -)$ and (R, θ) has type Γ, so (a) holds.

(b) Let $G = I(V_\Gamma, d), R = R_{m,\alpha, r, \gamma}, c$ a basic subgroup of $G, C = C_G(R), N = N_G(R), \theta = \theta_{\Gamma} \otimes I_{r} \otimes I_{c}$, and $\theta' = \theta_{\Gamma} \otimes I_{r} \otimes I_{c}$, where θ, θ' are irreducible characters of $C_G(R)$, and θ, θ' are defined as (3.13). If $(R_{\Gamma}, t_{\Gamma}, -)$ and $(R_{\Gamma}, t_{\Gamma}, -)$ are the labels of $(R_{\Gamma}, \theta_{\Gamma})$ and $(R_{\Gamma}, \theta_{\Gamma})$ respectively, then t_{Γ}, t_{Γ}' are conjugate in G_{Γ} since both Brauer pairs (R, θ) and (R, θ') are labeled by $(R, x_{\Gamma}, -)$. It follows by (3G)(b) that $\theta_{\Gamma}^w = \theta_{\Gamma}'$ for some $w \in N_{\Gamma}$.

Let $C_{m,\alpha, r, \gamma} = C_{I(V_\gamma, c)}(R_{m,\alpha, r, \gamma})$, so that $C_{m,\alpha, r, \gamma} = C_{\Gamma} \otimes I_{r}$. Let $\theta_{\Gamma} \otimes I_{r}$ and $\theta_{\Gamma}' \otimes I_{r}$ be irreducible characters of $C_{m,\alpha, r, \gamma}$ defined as (3.1). Since $N_{m,\alpha, r, \gamma}/N_{m,\alpha, r, \gamma}^{0} \simeq N_{\Gamma}/C_{\Gamma}$, it follows $(\otimes I_{r})^h = \theta_{\Gamma}^r \otimes I_{r}$ for some $h \in N_{m,\alpha, r, \gamma}$ and so $\theta^w = \theta'$ for some $n \in N$, where the structure of N is given above with m and α replaced by m_{Γ} and α_{Γ} respectively.

Remark. Suppose R is a basic subgroup of $G = I(V), b$ a block of $C_{G}(R)R$ with defect group R, and θ the canonical character of b. If $(N(\theta): C_{G}(R)R)_{n} = 1$, then (R, θ) is of type Γ for some $\Gamma \in \mathcal{T}$. In particular, this occurs when b is a root block of a block B and R is a defect group of B. Here a root block b of a block B, in the sense of Brauer, is a block of $C_{G}(R)$ with defect group R such that $b^{G} = B$, where R is a defect group of B. Thus if b is a root block of B and θ is the canonical character of b, then (R, θ) is a maximal Brauer pair containing $(1, B)$ and $(N(\theta): C_{G}(R)R)_{r} = 1$, where b is regarded as a block of $C_{G}(R)$. The proof of the remark is similar to that of (3J)(a). Indeed in the notation of (3J)(a) $N(\theta_{1} \otimes I_{r}))/N_{m,\alpha, \gamma}^{0} \simeq N(\theta_{1})/C_{1}$ and

$$N(\theta)/C_{G}(R)R \simeq (N(\theta_{1} \otimes I_{r}))/C_{m,\alpha, \gamma}R_{m,\alpha, \gamma} \otimes \text{GL}(c_{1}, r) \times \cdots \times \text{GL}(c_{1}, r).$$

Thus $(N(\theta_{1} \otimes I_{r})): C_{m,\alpha, \gamma}R_{m,\alpha, \gamma})_{r} = 1$ and $(N(\theta_{1} \otimes I_{r}))/N_{m,\alpha, \gamma}^{0} \simeq N(\theta_{1})/C_{1}$ since $(N(\theta): C_{G}(R)R)_{r} = 1$. So $(N(\theta_{1}): C_{1})_{r} = 1$ and the block of C_{1} containing θ_{1} has defect group R_{1}. By (3H) $G_{1} = G_{\Gamma}, R_{1} = R_{\Gamma}$, $\theta_{1} = \theta_{\Gamma}$, and (R, θ) has type Γ.

Following the remark above we can get a corollary.

(3K). Let V be a symplectic or even dimensional orthogonal space, $G = I(V), G_{0} = I_{0}(V), G_{0} = I_{0}(V), b$ be blocks of G with defect D and D' respectively such that $[V, D] = V = [V, D']$. Let b and b' be root blocks of B and B' respectively, $b^{G_{0}} \subseteq \mathbb{S}_{\epsilon}(G_{0}, (s)), b^{G_{0}} \subseteq \mathbb{S}_{\epsilon}(G_{0}, (s'))$, where s and s' are semisimple r'-elements of G_{0}. Then $B = B'$ if and only if s and s' are conjugate in $I(V^*)$, where V^* is the underlying space of G_{0}.

Proof. Since D is radical in G, a primary element of D exists and then G has an r-subgroup of form $R_{m, 0, 0}$ for some $m \geq 1$. By [12], $[1.12]$ and (5.2), V has dimension $2em$ and type ϵ^{m} if V is orthogonal.

Suppose s and s' are conjugate in $I(V^*)$, so that s^* and s'^* are conjugate in G by definition. By (3F) D and D' are conjugate with Sylow r-subgroups of $C_{G}(s^*)$ and $C_{G}(s'^*)$, respectively, so that they are conjugate in G. We may suppose $D = D'$.
By (2D) \(V \) and \(D \) have a corresponding decomposition,

\[
V = V_1 \perp V_2 \perp \cdots \perp V_t, \quad D = D_1 \times D_2 \times \cdots \times D_t,
\]

where \(D_i \) is a basic subgroup of \(I(V_i) \). Let \(\theta \) and \(\theta' \) be a corresponding decomposition,

\[
V = V_1 \perp V_2 \perp \cdots \perp V_t, \quad D = D_1 \times D_2 \times \cdots \times D_t,
\]

where \(D_i \) is a basic subgroup of \(I(V_i) \). Let \(\theta \) and \(\theta' \) be a corresponding decomposition,

\[
V = V_1 \perp V_2 \perp \cdots \perp V_t, \quad D = D_1 \times D_2 \times \cdots \times D_t,
\]

where \(D_i \) is a basic subgroup of \(I(V_i) \). Let \(\theta \) and \(\theta' \) be a corresponding decomposition,
or 2. If \((N(\theta) : N_0(\theta)) = 2\), then \(\theta^x = \theta\) for some \(x \in G\) of determinant \(-1\). So \((bG_0)^x = bG_0\) and thus \((bG_0)^g = bG_0\) for all \(g \in G\). This is impossible. Thus \(N(\theta) = N_0(\theta)\) and then \(m_{\chi \pm 1}(s) = 0\) by [12, (7B) and (7C)]. It follows that \(C_{G_0}(s) = C_{G_0}^*(s)\), so there exists \(x \in I(V^*)\) of determinant \(-1\) such that \(s^x\) and \(s\) are not conjugate in \(G_0^*\). Let \(D_x\) be a Sylow \(r\)-subgroup of \(C_{G_0}(s^x)\), and \(y^* \in Z(D_x)\) primary. Thus \(D_x\) and \(D\) are conjugate in \(G\), and \(s^x \in C_G(y^*) \approx GL(m, eq^e)\) for some \(m \geq 1\). Let \(y\) be a primary element of a Sylow \(r\)-subgroup of \(Z(C_G(y^*))\). Then \(C_{G_0}^*(y) = C_{G_0}^*(y)^*\) and \((y)\) is conjugate in \(I(V^*)\) with the subgroup generated by a dual of \(y^*\), so \(y^k\) is a dual of \(y^*\) for some integer \(k \geq 1\) and \(\langle y \rangle = \langle y^k \rangle\) by \(|y^k| = ra\). By the remark of \((3E)\) we may suppose \(s^x\) lies in the \(r\)-section containing \(y^k\) and \(s^x \in C_G(y^*)^*\). There exists a block \(b_x\) of \(C_{G_0}(y^*)\) labeled by \((s^x, -)\), so that \((\langle y^* \rangle, b_x)\) is a Brauer pair of \(G_0\) labeled by \((\langle y^* \rangle, s^x, -)\) and \(b_{G_0}^{(y^*)} \subseteq \mathcal{S}(G_0, (s^x))\) by \((3C)\). Since \(s\) and \(s^x\) are conjugate in \(G_0^*\), it follows that \(bG = B = bG_0\) by the first half of the proof and so \(B\) covers \(b_{G_0}^{(y^*)}\) since \(s\) and \(s^x\) are not conjugate in \(G_0^*\). This completes the proof.

4. Weights for classical groups

In this section we count the number of \(B\)-weights for a block \(B\) of finite classical groups. Given \(\Gamma \in \mathcal{F}'\) and integer \(d \geq 0\), let \(V_{r,d}\) be a unitary space of dimension \(r^d e_r d_r\) over \(F_q^d\), or a symplectic or orthogonal space over \(F_q\) given by \((3.12)\). Denote \(G = G_0 = U(V_{r,d})\) in the case \(V_{r,d}\) is unitary, and \(G = I(V_{r,d})\), \(G_0 = I_0(V_{r,d})\) in the remaining cases. Let \(0 < y < d\), and \(c = (c_1, c_2, \ldots, c_l)\) a sequence of nonnegative integers such that \(d - y = c_1 + c_2 + \cdots + c_l\). In addition, let

\[
R = R_{m, c, r, y} = I_{c_1} \cdot \cdots \cdot I_{c_l},
\]

be a basic subgroup of \(G\), \(C = C_G(R)\), and \(N = N_G(R)\). Then \(C = C_{r} \otimes I_{y} \otimes I_{e}\), where \(I_{c_i}\) and \(I_{e}\) are identity matrices of orders \(r^y\) and \(r^{c_1 + c_2 + \cdots + c_l}\) respectively. Define \(\theta\) on \(C\) by \(\theta(c \otimes I_{y} \otimes I_{e}) = \theta(c)\) for \(c \in C_{r}\). Then \(\theta\) is an irreducible character of \(C\) and \((R, \theta)\) is of type \(\Gamma\). Regard \(\theta\) as a character of \(CR\) trivial on \(R\). Then the block \(b\) of \(CR\) containing \(\theta\) has defect group \(R\) and the Brauer pair \((R, b)\) of \(G_0\) has label \((R, x_{r, -})\), where \(b\) is regarded as a block of \(C\), and \(x_{r} = r^d e_r\) in the case \(G\) is unitary and \(x_{r}\) is given by \((3.14)\) in the remaining cases. Let \(V_{m, r, \Gamma, y}\) be the underlying space of \(R_{m, r, \Gamma, y}\), \(G_{m, r, \Gamma, y} = U(V_{m, r, \Gamma, y})\) in the case \(V_{m, r, \Gamma, y}\) is unitary, or \(I(V_{m, r, \Gamma, y})\) in the remaining case. If \(\theta_{r} \otimes I_{\Gamma}\) is the character of \(G_{m, r, \Gamma, y}(R_{m, r, \Gamma, y}) = C_{r} \otimes I_{\Gamma}\) defined by \((\theta_{r} \otimes I_{\Gamma})(c \otimes I_{\Gamma}) = \theta_{r}(c)\) for \(c \in C_{r}\) and \(N(\theta_{r} \otimes I_{\Gamma})\) is its stabilizer in \(G_{m, r, \Gamma, y}(R_{m, r, \Gamma, y})\), then by \((2.2)\) or \((2.5)\)

\[
N(\theta) = \frac{(N(\theta_{r} \otimes I_{\Gamma})/R_{m, r, \Gamma, y}) \otimes N_{S_{(\psi)}(A_{c})}}{N(\theta_{r} \otimes I_{\Gamma})/R_{m, r, \Gamma, y} \times GL(c_1, r) \times \cdots \times GL(c_l, r)}.
\]

Thus the characters \(\psi\) in \(\text{Irr}^0(N(\theta), \theta)\) are parametrized by \((l + 1)\)-tuples \((\psi_0, \psi_1, \ldots, \psi_l)\), where \(\psi_0 \in \text{Irr}^0(N(\theta_{r} \otimes I_{\Gamma})), \theta_{r} \otimes I_{\Gamma})\) and \(\psi_i\) is an irreducible character of \(GL(c_i, r)\) of defect 0 for \(i \geq 1\). Necessarily, \(\psi_i\) are one of the \(r - 1\) Steinberg characters of \(GL(c_i, r)\) for \(i \geq 1\). By \((3A)\) or \((3I)\) there are
\(\beta_{r\Gamma r} \) such characters \(\psi_0 \), so that there are \(\beta_{r\Gamma r}(r-1)^l \) such characters \(\psi \), where \(\beta_{r\Gamma} = 1 \) or 2 according as \(\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2 \) or \(\Gamma \in \mathcal{F}_0 \). Thus there are \(\beta_{r\Gamma r}(r-1)^l \) \(b^G \)-weights of the form \((R, I(\psi))\).

(4A). Let \(V = V_{r, d} \), \(B \) a block of \(G \) with defect group \(D \) and root block \(b \) such that \([V, D] = V\) and \(b^G \subseteq \mathcal{F}_r(G_0, (x_\Gamma))\). Then there are exactly \(\beta_{r\Gamma r}d^d \) \(B \)-weights \((R, \varphi)\), where \(R \) runs over the basic subgroups of \(G \) with degree \(\beta_{r\Gamma r}d^d \).

Proof. (1) Suppose \(R = R_{r, \alpha, \gamma, c} \) is a basic subgroup of \(G \), \((R, \varphi)\) is a \(B \)-weight, and \(\varphi \) covers the irreducible character \(\theta \) of \(G(G(R))R \). Then the block \(b \) of \(G(G(R))R \) containing \(\theta \) has a defect group \(R \) and \(b^G = B \). By (3B) or (3J)(a) \((R, \theta)\) has type \(\Delta \) for some \(\Delta \in \mathcal{F}' \) and \((R, b)\) has label \((R, x_\Delta, -)\), where \(b \) is regarded as a block of \(G(G(R)) \). If \(V \) is unitary, then \(\Delta = \Gamma \) by [7, (3.2)]. Suppose \(V \) is a symplectic or orthogonal space. Let \((D', b')\) be a maximal pair containing \((R, b)\), so that \(b'^G = B \). As a block of \(G(G(D')D') \), \(b' \) is also a root block of \(B \) and \(b'^G = b^G \subseteq \mathcal{F}_r(G_0, (x_\Delta)) \) by (3C). Since \(D' \) is a defect group of \(B \), \(D' \) and \(D \) are conjugate in \(G \) and so \([V, D'] = V \). By (3K) \(x_\Delta \) and \(x_\Gamma \) are conjugate in \(I(V^*) \), where \(V^* \) is the underlying space of \(G^*_F \). Thus \(\Delta = \Gamma \) and \(m = m_r, \alpha = \alpha_r, \gamma + c_1 + c_2 + \cdots + c_1 = d \).

The number of different sequences \(c = (c_1, c_2, \ldots, c_i) \) such that
\[
d'(R_{r, \alpha, \gamma, c}) = \beta_{r\Gamma r}d^d \quad \text{and} \quad l(R_{r, \alpha, \gamma, c}) = l
\]
is \((d-\gamma-1)_{l-1}\). Here \(1 \leq l \leq d - \gamma \) when \(d - \gamma \geq 1 \); \(l = 0 \) when \(d = \gamma \), and \((\gamma)\) is interpreted as \(1\). There are \(\beta_{r\Gamma r}(r-1)^l \) characters \(\varphi \) associated with \(R_{r, \alpha, \gamma, c} \), so that there are
\[
\beta_{r\Gamma r} \sum_{\gamma=0}^d \sum_{l=0}^{d-\gamma} \binom{d - \gamma - 1}{l - 1} (r-1)^l = \beta_{r\Gamma r}d^d,
\]
characters associated with \(R_{r, \alpha, \gamma, c} \)’s.

(2) Suppose \(V \) is a symplectic or orthogonal space. By (3J)(b) the pair \((R, \theta)\) of type \(\Gamma \) is determined uniquely up to conjugacy in \(N_G(R) \), so that there are \(\beta_{r\Gamma r}d^d \) \(B \)-weights \((R, \varphi)\). Suppose \(V \) is a unitary space and \((R, b')\) is another Brauer pair of \(G \) such that \(b'^G = B \), and \(\theta' \) is the canonical character of \(b' \), where \(R = R_{r, \alpha, \gamma, c} \). Then \((R, \theta')\) has type \(\Gamma \), \(C = C_{G(R)} = C_{\Gamma} \otimes I_\gamma \otimes I_c \), and \(\theta' \) has the form \(\theta_{\Gamma} \otimes I_\gamma \otimes I_c \), where \(\theta_{\Gamma} \) is an irreducible character of \(C_{\Gamma} \). If \(b_{\Gamma} \) is the block of \(C_{\Gamma} \) containing \(\theta_{\Gamma} \), then \(b_{\Gamma}^{Gr} = B_{\Gamma} \) and both \(B_{\Gamma} \) and \(b_{\Gamma} \) have a defect group \(R_{\Gamma} \). By definition \(b_{\Gamma}^{Gr} = B_{\Gamma} \) and \(b_{\Gamma} \) has a defect group \(R_{\Gamma} \). Thus \(b_{\Gamma}^{w} = b_{\Gamma} \) for some \(w \in N_{\Gamma} \) by Brauer First Main Theorem. A similar proof to that of (3J)(b) shows that \(\theta' = \theta_n \) for some \(n \in N_G(R) \). Thus (4A) follows in this case.

Remark. In the notation of (4A), suppose \(V \) is orthogonal, \(G = I(V) \), and \(G_0 = I_0(V) \). If \((R, \theta)\) has type \(\Gamma \), then \(|N(\theta) : N_0(\theta)| = \beta_{r\Gamma} \) and for each \(\psi \in \text{Irr}^0(N(\theta), \theta) \), the restriction \(\psi|_{N_0(\theta)} \) of \(\psi \) to \(N_0(\theta) \) is irreducible, where \(N_0(\theta) = N(\theta) \cap G_0 \). Indeed in the notation above \(\psi = (\psi_0, \psi_1, \ldots, \psi_i) \) as a character of \(N(\theta)/R \), where \(\psi_0 \in \text{Irr}^0(N(\theta_\Gamma \otimes I_\gamma), \theta_\Gamma \otimes I_\gamma) \), and \(\psi_i \) is an irreducible character of \(\text{GL}(c_i, r) \) of defect 0 for \(i \geq 1 \). Let \(N_0(\theta_\Gamma \otimes I_\gamma) \) be the subgroup of \(N(\theta_\Gamma \otimes I_\gamma) \) of determinant 1. Then \(|N(\theta_\Gamma \otimes I_\gamma) : N_0(\theta_\Gamma \otimes I_\gamma)| = \beta_{r\Gamma} \)
and the restriction of ψ_0 to $N_0(\theta_{\Gamma} \otimes I_{\Gamma})$ is irreducible by the remark of (31). Thus by (4.1) $|N(\theta): N_0(\theta)| = \beta_{\Gamma}$. Now the restriction of ψ to

$$H = (N_0(\theta_{\Gamma} \otimes I_{\Gamma})/R_{m_{\Gamma}}) \times \text{GL}(c_1, r) \times \text{GL}(c_2, r) \times \cdots \times \text{GL}(c_t, r)$$

is irreducible. Since $N_0(\theta)/R \geq H$, $\psi|_{N_0(\theta)/R}$ is irreducible, and so $\psi|_{N_0(\theta)}$ is irreducible.

Given $\Gamma \in \mathcal{F}'$ and integer $w_{\Gamma} \geq 1$, let $G = U(V)$ or $I(V)$ and $G_0 = G$ or $I_0(V)$, where in the former case V is a unitary space of dimension $w_{\Gamma} r_{\Gamma} d_{\Gamma}$ over \mathbb{F}_q, in the latter case V is a symplectic or orthogonal space over \mathbb{F}_d such that $\dim V = w_{\Gamma} r_{\Gamma} d_{\Gamma}$ and if V is orthogonal, then $\eta(V) = e^{w_{\Gamma} r_{\Gamma} d_{\Gamma}}$ or $e_{w_{\Gamma} r_{\Gamma} d_{\Gamma}}$ according as $\Gamma \in \mathcal{F}_0$ or $\Gamma \in \mathcal{F} \cup \mathcal{F}_2$. Thus if V is unitary, then $s = w_{\Gamma} r_{\Gamma} \Gamma$ is a semisimple element of G and $C_G(s) \cong \text{GL}(w_{\Gamma} r_{\Gamma} d_{\Gamma}, q)$, so that G has a block B labeled by $(s, -)$ and a defect group D of B acts fixed-point freely on V since we may suppose D is a Sylow r-subgroup of $C_G(s)$. In the remaining case, a semisimple element s^* in G_0 exists such that $m_{\Gamma}(s^*) = w_{\Gamma} r_{\Gamma} \tau_{\Gamma}$ and $\eta_{\Gamma}(s^*) = \eta(V)$, so that a primary element of a Sylow r-subgroup of $C_G(s^*)$ exists and by the remark of (3E) a dual s of s^* exists in G_0 which is uniquely determined in $I(V^*)$ up to conjugacy, where V^* is the underlying space of G_0. Moreover, by (3K) s uniquely determines a block B of G which covers a block in $\mathcal{F}(G_0, (s))$ and whose defect group acts fixed-point freely on V.

For each $\Gamma \in \mathcal{F}'$ and integer $d \geq 0$, let $\mathcal{E}_{\Gamma, d} = \{\varphi_{\Gamma, d, i, j} : 1 \leq i \leq \beta_{w_{\Gamma} r_{\Gamma}} d_{\Gamma}, 1 \leq j \leq r_{\Gamma}^d\}$ be the set of characters associated with basic subgroups of $G = U(V_{\Gamma, d})$ or $I(V_{\Gamma, d})$ in (4A).

(4B). With the preceding notation, let B be a block of G with defect group D and root block b such that $[V, D] = V$ and $b^{G_0} \subseteq \mathcal{E}(G_0, (s))$. Then the number of B-weights is the number f_{Γ} of assignments

$$\prod_{d \geq 0} \mathcal{E}_{\Gamma, d} \rightarrow \{ \text{r-cores} \}, \quad \varphi_{\Gamma, d, i, j} \mapsto \kappa_{\Gamma, d, i, j},$$

such that

$$\sum_{d \geq 0} \beta_{w_{\Gamma} r_{\Gamma}} d_{\Gamma} \sum_{i=1}^{r_{\Gamma}^d} \sum_{j=1}^{r_{\Gamma}^d} |\kappa_{\Gamma, d, i, j}| = w_{\Gamma}.$$

Proof. Let (R, φ) be a B-weight of G, $C = C_G(R)$, and $N = N_G(R)$. Then there exists a block b of CR with defect group R such that $b^{G_0} = B$ and $\varphi \in b^N$. We may suppose $Z(D) \leq Z(R) \leq R \leq D$. Let z be a primary element of D defined by the remark of (2D). Then $z \in Z(D)$ and $[V, z] = V$, so that $C_V(R) = 0$. Thus in the decomposition (2B) or (2D) of R, we may suppose

$$R = R_1^{d_1} \times R_2^{d_2} \times \cdots \times R_u^{d_u},$$

where R_i's are distinct nontrivial basic subgroups and R_i appears d_i times as a component of R. Let V_i be the underlying space of R_i, $G_i = U(V_i)$ or $I(V_i)$ according as V_i is or is not a unitary space, $C_i = C_G(R_i)$, and $N_i = N_G(R_i)$. Then $C = C_1^{d_1} \times C_2^{d_2} \times \cdots \times C_u^{d_u}$. Let θ be the canonical character of b, so that we may suppose $\theta = \prod_{i=1}^u \theta_i^{d_i}$, where θ_i is an irreducible character of C_iR_i trivial on R_i. Let z_i be the restriction of z on V_i and $K_i = C_{G_i}(z_i)$ for all i. Then K_j and $\prod_{i=1}^u K_i^{d_i}$ are a regular subgroup of $I_0(V_j)$ and G_0,
so that $\prod_{i=1}^{u}(K_i^{*})^{d_i}$ is embedded as a regular subgroup of G_0^*. If (R_i, s_i, τ_i) is a label of the Brauer pair (R_i, θ_i), then $s_i \in K_i^{*}$, $\prod_{i=1}^{u} s_i^{d_i} \in \prod_{i=1}^{u}(K_i^{*})^{d_i}$, and so $(R, \prod_{i=1}^{u} s_i^{d_i}, \tau_i)$ is a label of the Brauer pair (R, b^α). Thus s_i and χ_i are conjugate in $I_0(V_i)^*$, (R_i, θ_i) has type Γ, and $R_i = R_{\alpha \Gamma_, \alpha_i, \gamma_i, \tau_i}$ for some γ_i and τ_i. It is clear that

$$N(\theta) = \prod_{i=1}^{u}N(\theta_i) \cdot S(d_i),$$

where $N(\theta_i)$ is the stabilizer of θ_i in N_i. In particular, if $\psi \in \text{Irr}^0(N(\theta), \theta)$, then $\psi = \prod_{i=1}^{u} \psi_i$, where ψ_i is an irreducible character of $N(\theta_i)S(d_i)$ covering $\theta_i^{d_i}$. Moreover, ψ_i has defect 0 as a character of

$$N(\theta_i) \cdot S(d_i)/R_i^{d_i} \cong (N(\theta_i)/R_i) \cdot S(d_i).$$

Let $\text{Irr}^0(N(\theta_i), \theta_i) = \{\phi_{i,j}: 1 \leq j \leq \beta_{\Gamma}r_{\Gamma}(r-1)^{(R_i)}\}$. As shown in the proof of [3, (2C)], the irreducible characters of defect 0 of $(N(\theta_i)/R_i) \cdot S(d_i)$ covering $\theta_i^{d_i}$ are in bijection with assignments $\phi_{i,j} \mapsto \kappa_{i,j}$ of characters to r-cores such that $\sum_{j \geq 1} |\kappa_{i,j}| = d_i$. Thus the irreducible characters of $\text{Irr}^0(N(\theta), \theta)$ are in bijection with assignments $\phi_{i,j} \mapsto \kappa_{i,j}$ of characters to r-cores such that

$$\sum_{i=1}^{u} (\deg R_i) \sum_{j \geq 1} |\kappa_{i,j}| = \beta_{\Gamma}r_{\Gamma}d_{\Gamma}w_{\Gamma}.$$

For fixed $d \geq 0$, the number of irreducible characters associated with basic groups of degree $\beta_{\Gamma}r_{\Gamma}d_{\Gamma}r^d$ is $\beta_{\Gamma}r_{\Gamma}r^d$. Let $\mathcal{G}_{\Gamma,d} = \{\phi_{\Gamma,d,i,j}: 1 \leq i \leq \beta_{\Gamma}r_{\Gamma}, 1 \leq j \leq r^d\}$ be the set of these characters. Then the number of B-weights is the number of assignments

$$\bigcup_{d \geq 0} \mathcal{G}_{\Gamma,d} \rightarrow \{r\text{-cores}\}, \quad \phi_{\Gamma,d,i,j} \mapsto \kappa_{\Gamma,d,i,j},$$

such that

$$\sum_{d \geq 0} \beta_{\Gamma}r_{\Gamma}d_{\Gamma}r^d \sum_{i=1}^{\beta_{\Gamma}r_{\Gamma}} r^d \sum_{j=1}^{r_{\Gamma}} |\kappa_{\Gamma,d,i,j}| = \beta_{\Gamma}r_{\Gamma}d_{\Gamma}w_{\Gamma}.$$

This induces the required condition of (4B).

(4C). With the preceding notation, let $G = O(V)$ be an orthogonal group, $G_0 = SO(V)$, and R a radical subgroup of G such that $[V, R] = V$. Let (R, b) a Brauer pair of G_0 labeled by (R, s, τ) and θ the canonical character of b. Then $|N(\theta): N_0(\theta)| = \beta_{\Gamma}$ and the restriction $\psi|_{N_0(\theta)}$ of each $\psi \in \text{Irr}^0(N(\theta), \theta)$ to $N_0(\theta)$ is irreducible, where $N_0(\theta) = N(\theta) \cap G_0$.

Proof. In the notation above $R = R_{d_1} \times R_{d_2} \times \cdots \times R_{d_u}$, V_i is the underlying space of R_i, $C = C_G(R) = \prod_{i=1}^{u} C_i^{d_i}$, and $\theta = \prod_{i=1}^{u} \theta_i^{d_i}$, where θ_i is an irreducible character of $C_i = C_{O(V_i)}(R_i)$ for $i \geq 1$. Each (R_i, θ_i) has type Γ. Let $N(\theta_i)$ and $N_0(\theta_i)$ be the stabilizers of θ_i in $N_{O(V_i)}(R_i)$ and $N_{SO(V_i)}(R_i)$ respectively. By the remark of (4A), $|N(\theta_i): N_0(\theta_i)| = \beta_{\Gamma}$ and so $|N(\theta): N_0(\theta)| = \beta_{\Gamma}$ since $N(\theta) = \prod_{i=1}^{u} N(\theta_i) \cdot S(d_i)$. If $\psi \in \text{Irr}^0(N(\theta), \theta)$, then $\psi = \prod_{i=1}^{u} \psi_i$, where ψ_i is an irreducible character of $N(\theta_i) \cdot S(d_i)$ covering $\theta_i^{d_i}$. Moreover,
\(\psi_i \) has defect 0 as a character of \(N(\theta_i) \triangleleft S(d_i)/R_i^d \simeq (N(\theta_i)/R_i) \triangleleft S(d_i) \). Let \(N_0(\theta_i^d) \) be the subgroup of \(N(\theta_i) \triangleleft S(d_i) \) of determinant 1. It then suffices to show that the restriction of \(\psi_i \) to \(N_0(\theta_i^d) \) is irreducible. Thus we may suppose \(u = 1 \) and \(d = d_1 \), so that \(\theta = \theta_i^d \) and \(N(\theta) = N(\theta_i) \triangleleft S(d) \). Since \(|N(\theta) : N_0(\theta)| \leq 2 \), \(\psi_i|_{N_0(\theta)} \) is irreducible if and only if \(N(\theta) \) stabilizes an irreducible constituent of \(\psi_i|_{N_0(\theta)} \).

Let \(T = N(\theta_1), H = N(\theta) = T \triangleleft S(d) \), \(X = T^d \) the base subgroup of \(H \), \(H_0 = N_0(\theta) \), and \(X_0 \) the subgroup of \(X \) of determinant 1. Then \(H = X \rtimes S(d) \) and \(H_0 = X_0 \rtimes S(d) \). We may suppose \(|H : H_0| = 2 \) and hence \(|T : T_0| = 2 \), where \(T_0 = T \cap I_0(V_1) \). Moreover, \((R_1, \theta_1)\) has type \(\Gamma \) and the restriction of each character in \(\text{Irr}^0(T, \theta_1) \) to \(T_0 \) is irreducible by the remark of \((4A)\). As shown in the proof of \([3, (2B)]\) (cf. also \([17, 5.20]\)), the irreducible characters of \(H \) can be obtained as follows: Let \(\text{Irr} \ T = \{\xi^1, \xi^2, \ldots, \xi^l\} \) be the complete set of irreducible characters of \(T \), and \(\xi \) an irreducible character of \(X \). Then \(m = (m_1, m_2, \ldots, m_l) \) is called the type of \(\xi \) if \(m_i \) is the multiplicity of \(\xi^i \) as a factor of \(\xi \). The stabilizer of \(\xi \) in \(H \) is \(XS_m \), and \(\xi \) can be extended to an irreducible character \(\tilde{\xi} \) of \(XS_m \) (see \([17, 5.13]\)), where \(S_m \) is the Young subgroup of \(S(d) \) of type \(m \). By Clifford theory, all irreducible characters of \(XS_m \) covering \(\xi \) have form \(\tilde{\xi} \zeta \) and \(\text{Ind}_{X}^{H}(\tilde{\xi}\zeta) \) is irreducible, where \(\zeta \) is an irreducible character of \(XS_m \) trivial on \(X \). Moreover, these characters \(\{\text{Ind}_{X}^{H}(\tilde{\xi}\zeta)\} \) consist of a complete set of irreducible characters of \(H \) as \(\xi \) runs over the representatives of conjugacy \(H \)-classes of \(\text{Irr} X \), and, while \(\xi \) is fixed, \(\xi \) runs over irreducible characters of \(S_m \), where \(m \) is the type of \(\xi \) (see \([17, 5.20]\)). In particular, \(\text{Ind}_{X}^{H}(\tilde{\xi}\zeta) \) has defect 0 as a character of \(H/R \) if and only if \(\xi \) has defect 0, and \(\xi \) has defect 0 as a character of \(X/R \). If \(\text{Ind}_{X}^{H}(\tilde{\xi}\zeta) \in \text{Irr}^0(H, \theta) \), then we may suppose \(\xi \) covers \(\theta \).

Suppose \(\xi \in \text{Irr}^0(X, \theta) \). Then the restriction \(\xi|_{X_0} = \xi|_{X_0} \) is irreducible since \(\xi|_{X_0} \) is irreducible by the remark of \((4A)\). Let \(K \) be the stabilizer of \(\xi \) in \(H_0 \). Then \(X_0S_m \leq K \), where \(m \) is the type of \(\xi \). We claim \(X_0S_m = K \). Indeed if there exists \(x \in K \setminus X_0S_m \), then we may suppose \(x \in S(d) \setminus S_m \), \(\xi^x \neq \xi \), and \(\xi^x|_{X_0} = \xi_0 \), since \(H_0 = X_0S(d) \) and the stabilizer \(\xi \) is \(XS_m \). In particular, \(d > 1 \). Thus \(\xi_i \neq \xi_i^x \) for some \(i \), \(j \) components \(\xi_i \) and \(\xi_i^x \) of \(\xi \) and \(\xi^x \) respectively and so \(\xi_i(h) \neq \xi_i^x(h) \) for some \(h \in T \). Since \(\xi|_{X_0} = \xi^x|_{X_0}, h \) has determinant \(-1 \). Let \(w = \text{diag}(w_1, w_2, \ldots, w_d) \in X \) such that \(w_i = h = w_j \), for some \(j = i \), and \(w_k = 1 \) for \(k \neq i, j \). Then \(w \in X_0 \) and \(\zeta(w) = \xi(w) = \xi^x(w) \). But the \(i \)th components of \(\xi(w) \) and \(\xi^x(w) \) are \(\xi_i(h) \) and \(\xi_i^x(h) \) respectively. This is impossible and the claim holds.

Since \(\tilde{\xi} \) is an extension of \(\xi \) to \(XS_m \), it follows \(\tilde{\xi}|_{X_0} = \xi_0 \) and hence \(\tilde{\xi}|_{X_0S_m} = \xi_0 \) is an extension of \(\xi_0 \) to \(X_0S_m \). By Clifford theory again, each irreducible character of \(X_0S_m \) covering \(\xi_0 \) has the form \(\tilde{\xi}_0\chi \), where \(\chi \) is an irreducible character of \(X_0S_m \) trivial on \(X_0 \), and each irreducible character of \(H_0 \) covering \(\xi_0 \) has the form \(\text{Ind}_{X_0S_m}(\tilde{\xi}_0\chi) \). Now for \(\psi \in \text{Irr}^0(H, \theta), \psi = \text{Ind}_{X}^{H}(\tilde{\xi}\zeta) \) for some irreducible character \(\xi \) of \(X \) with defect 0 as a character of \(X/R \), and \(\psi|_{X_0} = \xi_0 \) is irreducible. Thus there is an irreducible constituent \(\psi_0 \) of \(\psi|_{H_0} \) covering \(\xi_0 \) and so \(\psi_0 = \text{Ind}_{X_0S_m}(\tilde{\xi}_0\chi) \). We claim that \(\psi_0 = \psi_0 \) for any \(\tau \in X \). Indeed this is true for \(\tau \in X_0 \) and we may suppose \(\tau \) has
determinant -1. Since $|X_{Sm}| : X_{0Sm}| \leq 2$, τ normalizes X_{0Sm} and for x, $h \in H_0$, we have $h^{-1}x \in X_{0Sm}$ if and only if $h^x \in X_{0Sm}$ since $h^{-1}x = h^{x(x^{-1}r^{-1}x)}$ and $x^{-1}r^{-1}x \in X$. If $h^{-1}x \in X_{0Sm}$, then $(\hat{\xi}_0 \chi)(h^{-1}x) = (\hat{\xi}_0 \chi)^\tau(h^x)$, where $\tau = x^{-1}rxx \in X$. Since $\hat{\xi}_0 |X_{0Sm}| = \hat{\xi}_0$ is irreducible and χ is trivial on X_0, $\hat{\xi}_0^g = \hat{\xi}_0$ and $\chi^g = \chi$ for any $g \in X$. Therefore $(\hat{\xi}_0 \chi)^\tau(h^{x}) = (\hat{\xi}_0 \chi)(h^x)$ and so $(\hat{\xi}_0 \chi)(h^{-1}x) = (\hat{\xi}_0 \chi)(h^x)$, for any h, $x \in H_0$. Thus $\psi_0 = \psi_0$ and so $\psi|_{H_0} = \psi_0$ is irreducible. This proves (4C).

We now prove the main theorem of unitary groups.

(4D). Let V be a unitary space over \mathbb{F}_q, $G = U(V)$, B be a block of G with label (s, κ), $\prod_\Gamma s(\Gamma)$ the primary decomposition of s, $\sum_\Gamma V(\Gamma)$ the corresponding orthogonal decomposition of V, and w_Γ the integer such that $\dim V(\Gamma) = d_\Gamma |\kappa_\Gamma| = d_\Gamma \kappa r w_\Gamma$. Then the following hold:

1. The number of B-weights of G is $\prod_\Gamma f_\Gamma$, where f_Γ is given by (4B). In particular, f_Γ is the number of e_Γ-tuples $(\kappa_1, \kappa_2, \ldots, \kappa_{e_\Gamma})$ of partitions κ_i such that $\sum_{i=1}^{e_\Gamma} |\kappa_i| = \omega_\Gamma$.

2. The number of B-weights of G is the number $l(B)$ of irreducible modular characters in B.

Proof. Let R be a radical subgroup of G and $V = V_0 \perp V_+$, where $V_0 = C_R(R)$ and $V_+ = [V, R]$. Then $R = R_0 \times R_+$, where $R_0 = \langle 1_{V_0} \rangle$ and $R_+ \leq U(V_+)$. Let $C = C_{G}(R)$, $N = N_{G}(R)$, so that $C = C_0 \times C_+$, $N = N_0 \times N_+$, where $C_0 = N_0 = U(V_0)$, $C_+ = C_{U(V_+)}(R_+)$ and $N_+ = N_{U(V_+)}(R_+)$. Suppose b is a block of CR with defect group R and $b^G = B$. Then $b = b_0 \times b_+$, where b_0 is a block of $C_0R_0 = U(V_0)$ of defect 0, and b_+ is a block of C_+R_+ with defect group R_+. The canonical character θ of b decomposes as $\theta_0 \times \theta_+$, where θ_0 and θ_+ are the canonical characters of b_0 and b_+ respectively. Thus $N(\theta) = N_0 \times N_+(\theta_+)$, where $N_+(\theta_+)$ is the stabilizer of θ_+ in N_+.

Suppose $(R, I(\psi))$ is a B-weight of G, for some $\psi \in \text{Irr}^0(N(\theta), \theta)$. Clearly $\psi = \psi_0 \times \psi_+$ for character ψ_0 of N_0 and $\psi_+ \in \text{Irr}^0(N(\theta_+), \theta_+)$. Since ψ_0 is a character of $N_0 = C_0$ covering θ_0, it follows that $\psi_0 = \theta_0$. The correspondence $(R, I(\psi)) \mapsto (R_+, I_+(\psi_+))$, where $\psi = \theta_0 \times \psi_+$ and $R_+ = U(V_+)$ is a bijection from $\{(R, I(\psi)) : \psi \in \text{Irr}^0(N(\theta), \theta)\}$ to $\{(R_+, I_+(\psi_+)) : \psi_+ \in \text{Irr}^0(N(\theta_+), \theta_+)\}$.

By a theorem of Broué-Puig, [7, 3.2], we may suppose $s = s_0 \times s_+$ such that $s_0 \in C_0$, $s_+ \in C_+$, (s_0, κ) is the label of b_0, and $(s_+, -)$ is the label of $b^U(V_+)$. In the correspondence above, $(R_+, I_+(\psi_+))$ is a $b^U(V_+)$-weight. So the number of B-weights in G is the number of $b^U(V_+)$-weights in $U(V_+)$. Thus we may suppose $V = V_+$.

Let $R = \prod_{i=1}^t R_i$ and $V = \bigoplus_{i=1}^t V_i$ be the decompositions of (2B), and let $C = \prod_{i=1}^t C_i$ and $\theta = \prod_{i=1}^t \theta_i$, where $C_i = C_{U(V_i)}(R_i)$ and θ_i is a character of C_i. Since the block b_i of C_iR_i containing θ_i has a defect group R_i, (R_i, θ_i) has type Γ for a unique $\Gamma \in \mathcal{F}$ by (3B). Moreover, if $(R_i, t_i, -)$ is the label of (R_i, b_i), then $(R, \prod_{i} t_i, -)$ is the label of Brauer pair (R, b) of G, where b_i and b are regarded as blocks of C_i and C respectively. By [7, (3.2)] $(R, s, -)$ is also a label of (R, b), so that s and $\prod_{i} t_i$ are conjugate in G. Let $R(\Gamma) = \prod_{i} R_i$, $C(\Gamma) = \prod_{i} C_i$, $\theta(\Gamma) = \prod_{i} \theta_i$, and $t(\Gamma) = \prod_{i} t_i$, where i runs over all $1 \leq i \leq t$ such that (R_i, θ_i) is of type Γ. Then $R = \prod_{\Gamma} R(\Gamma)$,
\(\theta = \prod_{\Gamma} \theta(\Gamma), \quad C = \prod_{\Gamma} C(\Gamma), \) and \(\prod_{\Gamma} t(\Gamma) \) is a primary decomposition of \(s \) in \(G \). We may suppose \(s(\Gamma) = t(\Gamma) = t, \) so that \(N(\theta) = \prod_{\Gamma} N(\theta(\Gamma)) \), where \(N(\theta(\Gamma)) \) is the stabilizer of \(\theta(\Gamma) \) in \(U_{U(\Gamma)}(R(\Gamma)) \).

Each \(\psi = \prod_{\Gamma} \psi(\Gamma) \), for \(\psi \in \text{Irr}^0(N(\theta), \theta) \) and \(\psi(\Gamma) \in \text{Irr}^0(N(\theta(\Gamma)), \theta(\Gamma)) \). Let \(B(\Gamma) \) be a block of \(C(\Gamma) \) containing \(\theta(\Gamma) \), and \(B(\Gamma) = b(\Gamma)U(\Gamma) \). Then \(B(\Gamma) \) is labeled by \((s(\Gamma), -) \) and \((R(\Gamma), I(\psi(\Gamma))) \) is a \(B(\Gamma) \)-weight. Conversely, if \(B(\Gamma) \) is a block of \(U(\Gamma) \) with label \((s(\Gamma), -) \) and \((R(\Gamma), \varphi(\Gamma)) \) is a \(B(\Gamma) \)-weight, then there exists a block \(b(\Gamma) \) of \(C(\Gamma) \) with defect group \(R(\Gamma) \) and the canonical character \(\theta(\Gamma) \) such that \(b(\Gamma)U(\Gamma) = B(\Gamma) \) and \(\varphi(\Gamma) = I(\psi(\Gamma)) \) for some \(\psi(\Gamma) \in \text{Irr}^0(N(\theta(\Gamma)), \theta(\Gamma)) \). Let \(R = \prod_{\Gamma} R(\Gamma) \), \(\theta = \prod_{\Gamma} \theta(\Gamma), \) \(b = \prod_{\Gamma} b(\Gamma), \) and \(\psi = \prod_{\Gamma} \psi(\Gamma) \). Then \(\psi \in \text{Irr}^0(N(\theta), \theta), \) \(b^G = B, \) and \((R, I(\psi)) \) is a \(B(\Gamma) \)-weight. By (4B) the number of \(B(\Gamma) \)-weights of \(U(\Gamma) \) is \(f^G \) and so the number of \(B \)-weights of \(G \) is \(\prod_{\Gamma} f^G \). By [3, (1A)] \(f^G \) is also the number of \(\eta \)-tuples \((\kappa_1, \kappa_2, \ldots, \kappa_\eta) \) of partitions \(\kappa_i \) such that \(\sum_{i=1}^\eta |\kappa_i| = \eta \). This last number is also the number of partitions with \(\eta \)-core \(\kappa \) and \(\eta \)-weight \(\eta \). So \(\prod_{\Gamma} f^G \) is the number \(l(B) \) of irreducible modular characters in \(B \) by [11, (8A)]. This completes the proof.

(4E). Let \(q \) be a power of an odd prime, \(V \) be a symplectic or even dimensional orthogonal space over \(\mathbb{F}_q \), \(G = I(V), \) \(G_0 = I_0(V), \) \(B \) is a block of \(G \) with defect group \(D \) and root block \(b \) such that \([V, D] = V \) and \(b^G_0 \subseteq G_0 \) for some \(s \in G_0^\ast \). Let \(s^* \) be a dual of \(s \) in \(G_0 \) and \(m_f(s^*) = \eta \beta \epsilon \eta \), where \(\epsilon \) is an integer and \(\beta = 1 \) or 2 according as \(\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2 \) or \(\Gamma \in \mathcal{F}_0 \). Then the number of \(B \)-weights is \(\prod_{\Gamma} f^{G_0}_\Gamma \), where \(f^{G_0}_\Gamma \) is given by (4B). In particular, the number \(f^{G_0}_\Gamma \) is the number of \(\beta \epsilon \eta \)-tuples \((\kappa_1, \kappa_2, \kappa_\beta \epsilon \eta) \) of partitions \(\kappa_i \) such that \(\sum_{i=1}^{\beta \epsilon \eta} |\kappa_i| = \eta \).

Proof. Let \((R, \varphi) \) be a \(B(\Gamma) \)-weight of \(G \), \(C = C_G(R), \) and \(N = N_G(R) \). Then there is a block \(b \) of \(CR \) with defect group \(R \) and the canonical character \(\theta \) such that \(b^G = B \) and \(\varphi = I(\psi) \) for some \(\psi \in \text{Irr}^0(N(\theta), \theta) \). We may suppose \(Z(D) \leq Z(R) \leq R \leq D \), so that \([V, R] = V \).

Let \(R = \prod_{i=1}^u R_i \) and \(V = \sum_{i=1}^u V_i \) be the decompositions of \((2D) \), and let \(C = \prod_{i=1}^u C_i \), and \(\theta = \prod_{i=1}^u \theta_i \), where \(C_i = C_i(V_i)(R_i) \) and \(\theta_i \) is a character of \(C_iR_i \) for all \(i \). The block \(b_i \) of \(C_iR_i \) containing \(\theta_i \) has defect group \(R_i \). We claim that there is a weight \((R_i, \chi_i)\) of \(I(V_i) \) such that \(\chi_i \) covers \(\theta_i \), namely there is an irreducible character \(\chi_i \) of \(N_i/R_i \) which covers \(\theta_i \) and whose defect is 0, where \(N_i = N_{I(V_i)}(R_i) \). Thus by (3J)(a) \((R_i, \theta_i)\) has type \(\Gamma \) for some \(\Gamma \in \mathcal{F}_i \). To prove the claim we rewrite the decomposition of \(R \) as \(\prod_{j=1}^u R_j^{d_j} \), where \(R_j \)'s are distinct basic subgroups and \(R_j \) appears \(d_j \)-times as a component of \(R \). Then

\[
N = \prod_{j=1}^u N_j \cdot S(d_j).
\]

Thus \(\varphi = \prod_{j=1}^u \varphi_j \) and \((R_j^{d_j}, \varphi_j)\) is a weight of \(I(U_j) \), where \(U_j \) is the underlying space of \(R_j^{d_j} \). So we may suppose \(u = 1 \) and \(d = d_1 \). Thus \(R = R_1^{d_1} \), \(N = N_1 \cdot S(d) \), and \(\varphi \) is a character of defect 0 of \(N/R \simeq (N_1/R_1)^d \cdot S(d) \). As shown in the proof of (4C), the restriction of \(\varphi \) to the base group \((N_1/R_1)^d \) of
N/R has a constituent $(\xi_1, \xi_2, \ldots, \xi_d)$ covering θ and each ξ_i has defect 0 as character of N_i/R_i. Thus ξ_i covers θ_i and the claim holds.

Let $(R_i, t_i, -)$ be the label of Brauer pair (R_i, b_i). As shown in the proof of (4B), $(R, \prod_{i=1}^t t_i, -)$ is a label of (R, b) and $b_0 \subseteq \mathcal{E}(G_0, (\prod_{i=1}^t t_i))$. If V^* is the underlying space of G_0^*, then s and $\prod_{i=1}^t t_i$ are conjugate in $I(V^*)$ by (3K).

Let $R(\Gamma) = \prod_i R_i$, $V(\Gamma) = \sum_i V_i$, $C(\Gamma) = \prod_i C_i$, $\theta(\Gamma) = \prod_i \theta_i$, and $t(\Gamma) = \prod_i t_i$, where i runs over $1 \leq i \leq t$ such that (R_i, t_i) is of type Γ. Then $R = \prod R(\Gamma)$, $V = \sum_i V(\Gamma)$, $C = \prod R C(\Gamma)$, $\theta = \prod \theta(\Gamma)$, and $\prod_i t(\Gamma)$ is conjugate with s in $I(V^*)$. It is clear that $N(\theta) = \prod R N(\theta(\Gamma))$, where $N(\theta(\Gamma))$ is the stabilizer of $\theta(\Gamma)$ in $N_i(V(\Gamma))(R(\Gamma))$. A similar proof to the last paragraph of (4D) shows that the number of B-weights is $\prod f^*_r$ and by [3, (1A)] f_Γ is the number of β_r-tuple of partitions κ_i such that $\sum_o |\kappa_i| = w^\Gamma$. This completes the proof.

Remark. With the assumption of (4E), let $G = O(V)$, $G_0 = SO(V)$, R, φ a B-weight of G, and θ an irreducible character of $C = C_G(R)$ covered by φ. Then $|N(\theta) : N_0(\theta)| = 1$ as 2 according as $m_{x_{\pm 1}}(s) = 0$ or $m_{x_{\pm 1}}(s) \neq 0$. Moreover, for each $\psi \in \text{Irr}^0(N(\theta), \theta)$, the restriction $\psi|_{N_0(\theta)}$ is irreducible, where $N_0(\theta) = N(\theta) \cap G_0$. Indeed in the notation above $R = \prod R(\Gamma)$, $V = \sum_i V(\Gamma)$, $\theta = \prod \theta(\Gamma)$, $N(\theta) = \prod N(\theta(\Gamma))$, and $s = \prod t(\Gamma)$. Thus $\psi = \prod \psi(\Gamma)$ for some $\psi(\Gamma) \in \text{Irr}^0(N(\theta(\Gamma)), \theta(\Gamma))$. Since $[V, R] = V$, it follows that $[V(\Gamma), R(\Gamma)] = V(\Gamma)$. If $b(\Gamma)$ is the block of $C_{O(V(\Gamma))}(R(\Gamma))$ containing $\theta(\Gamma)$, then the Brauer pair $(R(\Gamma), \theta(\Gamma))$ has label $(R(\Gamma), t(\Gamma), -)$. Thus $\psi(\Gamma)$ is irreducible, where $N_0(\theta(\Gamma)) = (N(\theta(\Gamma)) \cap SO(V(\Gamma))$. So $|N(\theta) : N_0(\theta)| = 1$ or 2 according as $m_{x_{\pm 1}}(s) = 0$ or $m_{x_{\pm 1}}(s) \neq 0$, and $\psi|_{N_0(\theta)}$ is irreducible.

(4F). Let q be a power of an odd prime, $G = \text{Sp}(2n, q) = \text{Sp}(V)$, B a block of G contained in $\mathcal{E}(G(s))$ for some semisimple r'-element s of $G^* = SO(2n + 1, q)$. Let D be a defect group of B, $V_0 = C_Y(D)$, $V_+ = [V, D]$, so that $V = V_0 \perp V_+$, and let $s = s_0 \times s_+$ be the corresponding decomposition in G^*. Then $m_r(s) - m_r(s_0) = w^\Gamma f^*_r$ for some $w^\Gamma f^*_r \geq 0$, where $\beta_r = 1$ or 2 according as $\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2$ or $\Gamma \in \mathcal{F}_0$. The number of B-weights is $\prod f^*_r$, where f^*_r is given by (4B). In particular, f^*_r is the number of β_r-tuples $(\kappa_1, \kappa_2, \ldots, \kappa_{\beta_r+1})$ of partitions κ_i such that $\sum_{i=1}^{\beta_r+1} |\kappa_i| = w^\Gamma$.

Proof. Let (D, b) be a maximal Brauer pair of G containing $(1, B)$, and θ be the canonical character of b. Then $D = D_0 \times D_+$, $b = b_0 \times b_+$, and $\theta = \theta_0 \times \theta_+$, where $D_0 = \langle 1 \rangle_{V_0} \leq \text{Sp}(V_0)$, $D_+ \leq \text{Sp}(V_+)$, b_0, b_+ are blocks of $\text{Sp}(V_0)$ and $C_{\text{Sp}(V_0)}(D_+)$ respectively, and $\theta_0 \in b_0$, $\theta_+ \in b_+$. Let (R, φ) be a B-weight of G, $C = C_G(R)$, and $N = N_G(R)$. Then there is a block b of CR with defect group R and canonical character θ such that $b^G = B$ and $\varphi = I(\psi)$ for some $\psi \in \text{Irr}^0(N(\theta), \theta)$. We may suppose $Z(D) \leq Z(R) \leq R \leq D$. Thus $C_Y(R) = V_0$, $[V, R] = V_+$, so that $R = R_0 \times R_+$, $C = C_0 \times C_+$, $N = N_0 \times N_+$, where $R_0 = D_0$, $R_+ \leq \text{Sp}(V_+)$, $C_0 = N_0 = \text{Sp}(V_0)$, $C_+ = C_{\text{Sp}(V_0)}(R_+)$, and $N_+ = N_{\text{Sp}(V_0)}(R_+)$. Let $b = b_0 \times b_+$ and $\theta = \theta_0 \times \theta_+$ be the corresponding decompositions. Then b_0 is a block of $C_0R_0 = \text{Sp}(V_0)$ of defect 0, b_+ is a block of C_+R_+ with defect group R_+, and $\theta_0 \in b_0$, $\theta_+ \in b_+$. We claim $\theta_0 = \theta_0$. Indeed let (D', b'_+) be a
maximal Brauer pair of Sp(V+0) containing (R+, b+), b' = b0 x b'+, and D' = D0 x D'+. Then (D', b') is a maximal Brauer pair of Sp(V0) x Sp(V+) containing (R, b). If N(D', b') is the stabilizer of (D', b') in the normalizer N_G(D') of D', then (D', b') is maximal in G if and only if (D', b') is maximal in N(D', b'). Since N_G(D') ≤ Sp(V0) x Sp(V+), (D', b') is maximal in N(D', b') and then maximal in G containing (1, B). By the Brauer First Main Theorem, (D, b)^g = (D', b') for some g ∈ G, so that (θ0 x θ+)^g = θ0 x θ'+, where θ'+ is the canonical character of b'. Since D = D0 x D+ and D' = D0 x D'+, it follows g ∈ Sp(V0) x Sp(V+), and so g = g0 x g+, for g0 ∈ Sp(V0) and g+ ∈ Sp(V+). Thus θ0 = θ0 and θ'+ = θ'+. Moreover, b^Sp(V+) = b^Sp(V+) = b^Sp(V+).

It is clear that N(θ0) = N0 x N(θ+), where N0 = Sp(V0) and N(θ+) is the stabilizer of θ+ in N+. If ψ ∈ Irr^0(N(θ), θ), then ψ = ψ0 x ψ+, where ψ0 is an irreducible character of N0 = C0 covering θ0, and ψ+ ∈ Irr^0(N(θ+), θ+), so that ψ0 = θ0 = θ0. The correspondence (R, I(ψ)) ↔ (R+, I+(ψ+)), where ψ = ψ0 x ψ+ and I+(ψ+) = Ind_N_0(N(θ+), (θ+)), is clearly a bijection form {(R, I(ψ)) : ψ ∈ Irr^0(N(θ), θ)} to {(R+, I+(ψ+)) : ψ+ ∈ Irr^0(N(θ+), θ+)}. Since (R+, I+(ψ+)) is a b^Sp(V+)-weight, the number of B-weights in G is the number of b^Sp(V+)-weights in Sp(V+). Thus (4E) implies (4F).

In the following, we consider special orthogonal groups. If G = SO(2n + 1, q), then by Fong and Srinivasan, [12, (10B)], a block B of G is labeled by a pair (s, κ), where s is a semisimple r'-element in a dual group G* of G, κ = \prod \kappa_T is a product of symbols or partitions κ_T according as \Gamma ∈ \mathcal{F}_0 or \Gamma ∈ \mathcal{F}_1 ∪ \mathcal{F}_2 such that each κ_T is the r_T-core of either a symbol with rank \lceil \frac{1}{2} m_T(s) \rceil and odd defect, or a partition of m_T(s) according as \Gamma ∈ \mathcal{F}_0 or \Gamma ∈ \mathcal{F}_1 ∪ \mathcal{F}_2. Moreover, by [12, (12A)], B ⊆ Irr(G, (s)).

(4G). Let q be a power of an odd prime, G = SO(V) = SO(2n + 1, q), B a block of G with label (s, κ), \prod_{i=1}^r f_i a primary decomposition of s in G* = Sp(2n, q), and let \nu_T an integer such that m_T(s) = |\kappa_T| + e_T \nu_T if \Gamma ∈ \mathcal{F}_1 ∪ \mathcal{F}_2, and m_T(s) = 2 rank κ_T + 2e_T \nu_T if \Gamma ∈ \mathcal{F}_0. Then the following hold:

(1) The number of B-weights of G is \prod_{f_i} f_i, where \nu_T is the number of \beta f_T-tuples (κ_1, κ_2, ..., \kappa_{r_f_T}) of partitions κ_i such that \sum_{i=1}^{r_f_T} |\kappa_i| = \nu_T, and \beta = 1 or 2 according as \Gamma ∈ \mathcal{F}_1 ∪ \mathcal{F}_2 or \Gamma ∈ \mathcal{F}_0.

(2) The number of B-weights of G is |B ∩ Irr(G, (s))|.

Proof. Let \widetilde{G} = O(V), so that \widetilde{G} = (−1_V) × G, and let \widetilde{B} = 1 × B be a block of \widetilde{G}, where 1 is the principal block of (−1_V). Let (R, ϕ) be a B-weight of G, N = N_G(R), and \widetilde{N} = N_{\widetilde{G}}(R), so that \widetilde{N} = (−1_V) × N. There exists a block b of N such that ϕ ∈ b and b^G = B. Let \tilde{b} = 1 × b and \tilde{ϕ} = 1_{(−1_V)} × ϕ, where 1_{(−1_V)} is the principal character of (−1_V). Thus \tilde{ϕ} ∈ \tilde{b}, \tilde{b}^G = \tilde{B}, and (R, \tilde{ϕ}) is a \tilde{B}-weight of \widetilde{G}. The correspondence (R, ϕ) ↔ (R, \tilde{ϕ}) is clearly a bijection from B-weights to \tilde{B}-weights. Thus the number of B-weights in G is the number of \tilde{B}-weights in \widetilde{G}.

Let (D, b) be a maximal Brauer pair of \widetilde{G} containing (1, \tilde{B}), θ the canonical character of \tilde{b}, V_0 = C_\Gamma(D), V_+ = [V, D]. Then V = V_0 ⊥ V_+ and V_+ is an even dimensional orthogonal space since D is radical. In addition, let \widetilde{G}_0 = O(V_0), \widetilde{G}_0 = SO(V_0), \widetilde{G}_+ = O(V_+), and G_+ = SO(V_+). Then
$D = D_0 \times D_+ = \tilde{b} = b_0 \times \tilde{b}_+, \ \tilde{\vartheta} = \tilde{\vartheta}_0 \times \tilde{\vartheta}_+, \ \text{where} \ D_0 = \langle 1_{V_0} \rangle \leq \tilde{G}_0, \ D_+ \leq \tilde{G}_+, \ b_0, \ \tilde{b}_+ \text{ are blocks of } \tilde{G}_0, \ C^{-+}(D_+) \text{ respectively, and } \tilde{\vartheta}_0 \in \tilde{b}_0, \ \tilde{\vartheta}_+ \in \tilde{b}_+.$

Now the proof of (4F) can be applied here with G replaced by \tilde{G}, B by \tilde{B}, ϑ by $\tilde{\vartheta}$, b by \tilde{b}, and some obvious modifications. Thus the number of \tilde{B}-weights in \tilde{G} is the number of \tilde{b}_+^{-+}-weights in \tilde{G}_+. Moreover, \tilde{b}_+ is a root block of \tilde{b}_+^{-+} and $\tilde{b}_+^{-+} \subseteq \mathcal{E}_\Gamma(G_+, (s_+))$. Since $C^{-+}(D) = (\langle 1_{V_0} \rangle) \times C_G(D)$ and $\tilde{\vartheta}_0 = 1 \times \tilde{\vartheta}_0$ for $\tilde{\vartheta}_0 \in \tilde{b}_0$. Since $C^{-+}(D_+) = C_G(D_+)$, \tilde{b}_+ is a block of $C_G(D_+)$ and then $b_0 \times \tilde{b}_+$ is a root block of B. Here $b_0 \times \tilde{b}_+$ is regarded as a block of $C_G(D)$. As shown in the proof of [12, (12A)], (s_0, κ) is the label of ϑ_0, so that $m_{\Gamma}(s) = |\kappa_1| + m_{\Gamma}(s_+)$ if $\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2$, and $m_{\Gamma}(s) = 2$ rank $\kappa + m_{\Gamma}(s_+)$ if $\Gamma \in \mathcal{F}_0$. Thus $m_{\Gamma}(s_+) = m_{\Gamma}(s_+^*) = w_{\Gamma}^{-} \beta_\Gamma e_{\Gamma}$, where s_+^* is a dual of s_+ in G_+. So (4G)(1) follows from (4E).

Finally, there exists a bijection between $\mathcal{E}(G, (s))$ and $\mathcal{E}(C_{G^*}(s)^{\star}, (1))$. By [12, (12A)] and [19, Proposition 14] the number given by (1) is the number of the characters of $\mathcal{E}(G, (s)) \cap B$.

Remark. (1) Suppose $G = SO(2n + 1, q)$ and r is a good prime. Then by [13, 5.1] $l(B) = |B \cap \mathcal{E}(G, (s))|$, so that $l(B)$ is the number of B-weights.

(2) By a result of Fong and Olsson (unpublished), if $G = SO(2n + 1, q)$ and r is odd, then $l(B) = |B \cap \mathcal{E}(G, (s))|$ and this is the number of B-weights.

(4H). Let q be a power of an odd prime, $G = SO^\pm(2n, q) = SO(V)$, B is a block of G with defect group D and root block b such that $B \subseteq \mathcal{E}(G, (s))$ for some semisimple r'-element s of $G^* = SO^\pm(2n, q)$, and let $V_0 = C_{V_0}(D)$, $V_+ = [V, D]$, so that $V = V_0 \perp V_+$. Let $s = s_0 \times s_+$, $\vartheta = \vartheta_0 \times \vartheta_+$ be the corresponding decompositions, where ϑ is the canonical character of b. If $m_{\Gamma}(s_+) = w_{\Gamma}^{-} \beta_\Gamma e_{\Gamma}$ for some $w_{\Gamma} \geq 0$, then denote f_{Γ} the number of $\beta_\Gamma e_{\Gamma}$-tuples $(\kappa_1, \kappa_2, \ldots, \kappa_{\beta_\Gamma e_{\Gamma}})$ of partitions κ_i such that $\sum_{i=1}^{\beta_\Gamma e_{\Gamma}} |\kappa_i| = w_{\Gamma}$, where $\beta_{\Gamma} = 1$ or 2 according as $\Gamma \in \mathcal{F}_1 \cup \mathcal{F}_2$ or $\Gamma \in \mathcal{F}_0$. Then the following hold:

(1) If either $m_{\Gamma}(s_+) = 0$ or $\vartheta_0^0 \neq \vartheta_0$ for some $\vartheta_0 \in O(V_0)$ of determinant -1, then the number of B-weights is $\prod_{\Gamma} f_{\Gamma}$.

(2) Suppose $m_{\Gamma}(s_+) \neq 0$. If either $V_0 = 0$ or $\vartheta_0^0 = \vartheta_0$ for any $\vartheta_0 \in O(V_0)$ of determinant -1, then the number of B-weights is $\frac{1}{2} \prod_{\Gamma} f_{\Gamma}$.

Proof. Let $\tilde{G} = O(V), \ \tilde{G}_0 = O(V_0), \ G_0 = SO(V_0), \ G_+ = O(V_+), \ G_+ = SO(V_+)$, and $D = D_0 \times D_+$, where $D_0 = \langle 1_{V_0} \rangle$ and $D_+ \leq G_+$. In addition, let b_+ be a block of $C_{G_+}(D_+)D_+$ containing ϑ_+, and $b_+^{G_+} \subseteq \mathcal{E}_\Gamma(G_+, (s_+'))$ for some semisimple r'-element s_+' of G_+^*. Then $(D_+, s_+', -)$ is a label of Brauer pair (D_+, b_+). But $(D_+, s_+', -)$ is also a label of (D_+, b_+), and so s_+', s_+' are conjugate in G_+^*. Let (R, φ) be a B-weight, $C = C_G(R), \ \tilde{C} = C_{\tilde{G}}(R), \ N = N_G(R), \ \tilde{N} = N_{\tilde{G}}(R)$. Then there exists a block b of CR with defect group R and canonical character ϑ such that $b^G = B$ and $\varphi = I(\psi)$ for some $\psi \in Irr^0(N(\theta), \theta)$. We may suppose $Z(D) \leq Z(R) \leq R \leq D$, so that $R = R_0 \times R_+$, $C = G_0 \times C_+, \ \tilde{C} = \tilde{G}_0 \times C_+, \ N = \langle \tau, G_0 \times N_+ \rangle$, and $\tilde{N} = \tilde{G}_0 \times \tilde{N}_+$, where $R_0 = D_0$, $R_+ = D_+$.
WEIGHTS FOR CLASSICAL GROUPS

\[R_+ \leq G_+, \quad C_+ = C_{G_+}(R_+), \quad N_+ = N_{G_+}(R_+), \quad \tilde{N}_+ = N_{\tilde{G}_+}(R_+), \quad \text{and} \quad \tau = \tau_0 \times \tau_+ \]

with \(\tau_0 \in \tilde{G}_0, \quad \tau_+ \in \tilde{G}_+ \) of determinants \(-1\). Thus \(\tilde{N} = (\tau_0, N), \quad \theta = \theta_0 \times \theta_+ \),
and \(b = b_0 \times b_+ \), where \(b_0 \) is a block of \(G_0 \) of defect 0, \(b_+ \) is a block of \(C_+ R_+ \) with defect group \(R_+, \quad \theta_0 \in \theta_0, \quad \text{and} \quad \theta_+ \in \theta_+ \).

Let \((D'_+, b'_+)\) be a maximal Brauer pair of \(\tilde{G}_+ \) containing \((R_+, b_+)\), where \(b_+ \) is regarded as a block of \(C_+ \). Let \(D' = D_0 \times D'_+, \quad b' = b_0 \times b'_+ \). A similar proof to that of \((4F)\) shows that \((D', b')\) is a maximal Brauer pair of \(G \) containing \((R, b)\), where \(b \) is regarded as a block of \(C \). So \((D, b)_{\theta} = (D', b')\) for some \(\theta \in G \) by the Brauer First Main Theorem. Thus \(g = g_0 \times g_+ \) for \(g_0 \in \tilde{G}_0 \) and \(g_+ \in \tilde{G}_+ \). If \(\det(g_0) = -1 \), then we replace \(b \) by \(b'^* \) and \(\theta_0 \) by \(\theta'^*_0 \). We may suppose \(g_0 \in \tilde{G}_0 \) and \(g_+ \in \tilde{G}_+ \). Since \((\theta_0 \times \theta_+)^* = \theta_0 \times \theta_+^* \),
it follows that \(\theta_0 = \theta_0^* \) and \(\theta_+^* = \theta_+^* \), where \(\theta_+^* \) is the canonical character of \(b_+^* \). It follows that \(b_+^{G_+} = b_+^G \), so that \(b_+^{\tilde{G}_+} = b_+^{\tilde{G}} \) and we may suppose \((R_+, s_+, -)\) is a label of \((R_+, b_+)\). Replacing \(R \) by \(R_0 \times R_+^{-1} \) and \(b \) by \(b_0 \times b_+^{\sigma_0} \), we may suppose \((R, b) \leq (D, b)\).

(1) Suppose \(m_{X \pm 1}(s_+) = 0 \). Set \(\tilde{B}_+ = b_+^{\tilde{G}_+} \), so that \(b_+ \) is a root block of \(\tilde{B}_+ \) and \(D_+ \) is a defect group of \(\tilde{B}_+ \). We shall show that the number of \(B \)-weights in \(G \) is the number of \(B_+ \)-weights in \(\tilde{G}_+ \).

Let \(N(\theta_+) \) and \(\tilde{N}(\theta_+) \) be the stabilizers of \(\theta_+ \) in \(N_+ \) and \(\tilde{N}_+ \) respectively.
By the remark of \((4E)\) \(N(\theta_+) = \tilde{N}(\theta_+) \).
Since \(N(\theta) = G_0 \times N(\theta_+) \), it follows that \(\psi = \theta_0 \times \psi_+ \) for some \(\psi_+ \in \text{Irr}^0(\tilde{N}(\theta_+), \theta_+) \).
Then \((R_+, I_+^0(\psi_+))\)
is a \(\tilde{B}_+ \)-weight of \(\tilde{G}_+ \), where \(I_+^0(\psi_+) = \text{Ind}_{\tilde{N}(\theta_+)}^{\tilde{N}(\theta_+)}(\psi_+) \).
Conversely, suppose \((R_+, \varphi_+)\) is a \(\tilde{B}_+ \)-weight, where \(R_+ \) is a radical subgroup of \(\tilde{G}_+ \).
Then \([V_+, R_+] = V_+ \) and there exists a block of \(C_+ R_+ \) with defect group \(R_+ \) and canonical character \(\theta_+ \) such that \(\varphi_+ = I_+^0(\psi_+) \) for some \(\psi_+ \in \text{Irr}^0(\tilde{N}(\theta_+), \theta_+) \) and \(b_+^{\tilde{G}_+} = \tilde{B}_+ \), where \(C_+, \tilde{N}_+ \) are given before, \(\tilde{N}(\theta_+) \) is the stabilizer of \(\theta_+ \) in \(\tilde{N}_+ \), and \(I_+ \) is defined as before. By the remark of \((4E)\) \(\tilde{N}(\theta_+) \leq G_+ \).
Let \(\theta = \theta_0 \times \theta_+ \), \(R = D_0 \times R_+, \quad \psi = \theta_0 \times \psi_+ \), \(b \) a block of \(C_{G}(R) \) containing \(\theta \),
and \(\varphi \in \text{Irr}^0(N(\theta), \theta) \). We may suppose \((R_+, b_+) \leq (D_+, b_+) \), so that \((R, b) \leq (D, b) \).
Thus \(b^G = B \) and \((R, I(\psi))\) is a \(B \)-weight.
The correspondence \((R, I(\psi)) \mapsto (R_+, I_+^0(\psi_+))\), where \(R = D_0 \times R_+ \) and \(\psi = \varphi_0 \times \psi_+ \) is clearly a bijection from \(\{(R, I(\psi)) : \psi \in \text{Irr}^0(N(\theta), \theta)\} \) to \(\{(R_+, I_+^0(\psi_+)) : \psi_+ \in \text{Irr}^0(\tilde{N}(\theta_+), \theta_+)\} \).
So the number of \(B \)-weights is the number of \(B_+ \)-weights, and it is \(\prod \pi_1 \gamma_1 \) by \((4E)\).

Suppose \(\varphi_0^0 = \tilde{\varphi}_0 \) for some \(\sigma_0 \in \tilde{G}_0 \) of determinant \(-1\). Then there are two irreducible characters \(\varphi_0^0 \) and \(\varphi_0^0' \) of \(G_0 \) covering \(\varphi_0 \). Let \(\varphi' = \varphi_0^0 \times \varphi_0^0', \quad \varphi'' = \varphi_0^0 \times \varphi_0^0', \quad \text{and} \quad b', \ b'' \) the blocks of \(C_{\tilde{G}}(D) \) containing \(\varphi', \varphi'' \) respectively.
Then \(\varphi', \varphi'' \) are not conjugate in \(N_{\tilde{G}}(D) = \tilde{G}_0 \times N_{\tilde{G}_+}(D_+, b_+) \), so \(b'\tilde{G} \) and \(b''\tilde{G} \) are two blocks of \(\tilde{G} \). We shall show that the number of \(b'\tilde{G} \)-weights is the number of \(B \)-weights.

Suppose \((R, \varphi)\) is a \(B \)-weight. In the notation above, \(N = (\tau, G_0 \times N_+)\)
and \(\widetilde{N} = \langle \tau_0, G_0 \times \widetilde{N}_+ \rangle \), where \(\tau = \tau_0 \times \tau_+ \) with \(\tau_0 \in \widetilde{G}_0, \tau_+ \in \widetilde{G}_+ \) of determinants \(-1\). Moreover, we may suppose \((R, b) \leq (D, b)\) and \(\theta_0 = \theta_0\). Let \(\widehat{b} = \theta_0' \times \theta_+\) and \(\widehat{b}\) the block of \(\tilde{C}\) containing \(\widehat{\theta}\). Then \((R, \widehat{b}) \leq (D, b')\) and \(\widehat{b} \mathcal{C} = b' \mathcal{C}\). Conversely, if \((R, \phi)\) is a weight of \(b' \mathcal{C}\), then there exists a block \(b\) of \(\mathcal{C}R\) with defect group \(R\) and canonical character \(\widehat{\theta}\) such that \(\widehat{b} \mathcal{C} = b' \mathcal{C}\) and \(\phi \in \text{Irr}(\widetilde{N}, \widehat{\theta})\), where \(\tilde{C}\) is defined before. Then \(b = b_0 \times b_+\) and \(\widehat{\theta} = \theta_0' \times \theta_+\), where \(b_0\) and \(b_+\) are blocks of \(\widetilde{G}_0\) and \(\widetilde{G}_+\) respectively and \(\theta_0 \in b_0\) and \(\theta_+ \in b_+\). As shown in the proof of \((4F)\), we may suppose \(\theta_0 = \theta_0'\) and \((R, \widehat{b}) \leq (D, b')\). Let \(\theta = \theta_0 \times \theta_+\) and \(b\) the block of \(\mathcal{C}\) containing \(\theta\). Then \((R, b) \leq (D, b)\). In addition, each character \(\phi \in \text{Irr}^0(N, \theta)\) or \(\phi \in \text{Irr}^0(\widetilde{N}, \widehat{\theta})\) covers a character of \(\text{Irr}^0(G_0 \times N_+, \theta)\) and each character of \(\text{Irr}^0(\widetilde{N}_+, \theta')\) decomposes as \(\theta_0 \times \phi_+\) for some \(\phi_+ \in \text{Irr}(\mathcal{C}+\theta)\). So it suffices to show that the number of \(b' \mathcal{C}\)-weights of the form \((R, \phi)\) with \(\phi\) covering \(\theta_0 \times \phi_+\) is the number of \(B\)-weights of the form \((R, \phi)\) with \(\phi\) covering \(\theta_0 \times \phi_+\). It is equivalent to show that the number of irreducible characters in \(b' \mathcal{C}\) covering \(\theta_0 \times \phi_+\) is the number of irreducible characters in \(b' \mathcal{C}\) covering \(\theta_0 \times \phi_+\) since \((\mathcal{N} : N) = (\mathcal{N} : G_0 \times N_+) = 2\).

If \(\tau_+\) stabilizes \(\phi_+\), then there are two irreducible characters \(\phi_+\) and \(\phi_+\) of \(\widetilde{N}_+\) covering \(\phi_+\), so that there are four irreducible characters \(\theta_0' \times \phi_+, \theta_0' \times \phi_+\), \(\theta_0'' \times \phi_+\), and \(\theta_0'' \times \phi_+\) of \(\widetilde{N} = \widetilde{G}_0 \times \widetilde{N}_+\) covering \(\theta_0 \times \phi_+\). Moreover, exactly two of them \(\theta_0' \times \phi_+\), and \(\theta_0' \times \phi_+\) cover \(\theta_0 \times \phi_+\) and both lie in \(b' \mathcal{C}\) by \([10, V 3.10]\). Since \(\tau = \tau_0 \times \tau_+\) stabilizes \(\phi_+\), there are two irreducible characters of \(\mathcal{N}\) covering \(\theta_0 \times \phi_+\) and lying in \(b' \mathcal{C}\). It follows that both \(\widehat{b} \mathcal{N}\) and \(\widehat{b} \mathcal{N}\) have two irreducible characters covering \(\theta_0 \times \phi_+\), so that the number of \(b' \mathcal{C}\)-weights is the number of \(B\)-weights.

If \(\tau_+\) does not stabilize \(\phi_+\), then there are two irreducible characters \(\theta_0' \times (\phi_+ + \phi_+\) and \(\theta_0' \times (\phi_+ + \phi_+\) of \(\widetilde{N}\) covering \(\theta_0 \times \phi_+\) and only the first lies in \(\widehat{b} \mathcal{N}\). Since \((\theta_0 \times \phi_+) \tau \neq \theta_0 \times \phi_+\), \(\mathcal{N}\) has only one irreducible character covering \(\theta_0 \times \phi_+\) and lying in \(b' \mathcal{C}\). So both \(\widehat{b} \mathcal{N}\) and \(\widehat{b} \mathcal{N}\) has one irreducible character covering \(\theta_0 \times \phi_+\). Thus the number of \(b' \mathcal{C}\)-weights is the number of \(B\)-weights.

A similar proof to that of \((4F)\) can be applied here with \(G\) replaced by \(\widetilde{G}\), \(B\) by \(\mathcal{C}\), \(b\) by \(\mathcal{C}\), \(\theta\) by \(\phi\), and some obvious modifications, so that the number of \(b' \mathcal{C}\)-weights is the number of \(B\)-weights. By \((4E)\) the number of \(b' \mathcal{C}\)-weights is \(\Pi_{\tau \in G} f_{\tau}\) and this is the number of \(B\)-weights. This completes the proof of \((1)\).

(2) Suppose \(m_{x^\pm_1(s_+)} \neq 0\) and \((R, \phi)\) is a \(B\)-weight. In the notation above, suppose \(\widetilde{N}(\theta)\) and \(\mathcal{N}(\theta)\) are the stabilizers of \(\theta\) in \(\widetilde{N}\) and \(\mathcal{N}\) respectively.

If \(V_0 = 0\), then \((\widetilde{N}(\theta) : \mathcal{N}(\theta)) = 2\) and \(|\text{Irr}^0(\widetilde{N}(\theta), \tau)| = 2|\text{Irr}^0(\mathcal{N}(\theta), \tau)|\) by the remark of \((4E)\). So the number of \(B\)-weights is \(\frac{1}{2} \Pi_{\tau \in G} f_{\tau}\) by \((4E)\).

Suppose \(V_0 \neq 0\) and \(\theta_0^{-1} \neq \theta_0\) for some \(\tau_0 \in \widetilde{G}_0\) of determinant \(-1\). By the proof above, we may suppose \(\theta = \theta_0 \times \theta_+\) for some character \(\phi_+\) of \(\mathcal{C}_+\) and \((R, b) \leq (D, b)\). Let \(\mathcal{N}(\theta_+)\) and \(\mathcal{N}(\theta_+)\) be the stabilizers of \(\theta_+\) in \(\widetilde{N}_+\) and \(\mathcal{N}_+\) respectively. Then \(\widetilde{N}(\theta) = G_0 \times \mathcal{N}(\theta_+)\) and \(\mathcal{N}(\theta) = G_0 \times \mathcal{N}(\theta_+)\),
so that by the remark of (4E), \(|\text{Irr}^0(\widetilde{N}(\theta_+), \theta_+)| = 2|\text{Irr}^0(N(\theta_+), \theta_+)|\). Thus
\(|\text{Irr}^0(\widetilde{N}(\theta), \theta)| = 2|\text{Irr}^0(N(\theta), \theta)|\) since each character \(\psi\) of \(\text{Irr}^0(\widetilde{N}(\theta), \theta)\) and each \(\psi\) of \(\text{Irr}^0(N(\theta), \theta)\) decomposes as \(\psi = \theta_0 \times \psi_+\) and \(\psi = \theta_0 \times \psi_+\) for some \(\psi_+ \in \text{Irr}^0(\widetilde{N}(\theta_+), \theta_+)\) and \(\psi_+ \in \text{Irr}^0(N(\theta_+), \theta_+)\). Let \(b'\) be the block of \(C^{\sim}(D)D\) containing \(\vartheta' = (\theta_0 + \theta_0^\circ) \times \theta_+\) and \(b\) the block of \(C\) containing \(\vartheta = (\theta_0 + \theta_0^\circ) \times \theta_+\). Since \((R, b) \leq (D, b)\) in \(G\), it follows that
\((R, b') \leq (D, b')\) in \(\widetilde{G}\), so that \(b^{\sim}G = b^G\). Thus the number of \(B\)-weights is half of the number of \(b^{\sim}G\)-weights. A similar proof to that of (4F) can be applied here with \(G\) replaced by \(\widetilde{G}\), \(B\) by \(b^\sim G\), \(b\) by \(b'\), \(\vartheta\) by \(\vartheta'\), and some obvious modifications, so that the number of \(b^\sim G^+\)-weights is the number of \(b^G\)-weights. By (4E) the number of \(b^\sim G^+\)-weights is \(\prod_{\Gamma} f_{\Gamma}\) and so the number of \(B\)-weights is \(\frac{1}{2} \prod_{\Gamma} f_{\Gamma}\). This completes the proof.

References

Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60680

Current address: Department of Mathematics, University of Auckland, Auckland, New Zealand

E-mail address: an@mat.auckland.ac.nz