Second order differentiability of convex functions in Banach spaces
HTML articles powered by AMS MathViewer
- by Jonathan M. Borwein and Dominikus Noll
- Trans. Amer. Math. Soc. 342 (1994), 43-81
- DOI: https://doi.org/10.1090/S0002-9947-1994-1145959-4
- PDF | Request permission
Abstract:
We present a second order differentiability theory for convex functions on Banach spaces.References
- Ralph Abraham, Jerrold E. Marsden, and Tudor S. Raţiu, Manifolds, tensor analysis, and applications, Global Analysis Pure and Applied: Series B, vol. 2, Addison-Wesley Publishing Co., Reading, Mass., 1983. MR 697563
- A. D. Alexandroff, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser. 6 (1939), 3–35 (Russian). MR 0003051
- N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), no. 2, 147–190. MR 425608, DOI 10.4064/sm-57-2-147-190
- Hédy Attouch, Familles d’opérateurs maximaux monotones et mesurabilité, Ann. Mat. Pura Appl. (4) 120 (1979), 35–111 (French, with English summary). MR 551062, DOI 10.1007/BF02411939
- Hédy Attouch and Roger J.-B. Wets, Isometries for the Legendre-Fenchel transform, Trans. Amer. Math. Soc. 296 (1986), no. 1, 33–60. MR 837797, DOI 10.1090/S0002-9947-1986-0837797-X
- Victor Bangert, Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannigfaltigkeiten, J. Reine Angew. Math. 307(308) (1979), 309–324 (German). MR 534228, DOI 10.1515/crll.1979.307-308.309
- A. Ben-Tal and J. Zowe, Directional derivatives in nonsmooth optimization, J. Optim. Theory Appl. 47 (1985), no. 4, 483–490. MR 818873, DOI 10.1007/BF00942193
- Jonathan Borwein, Simon Fitzpatrick, and Petar Kenderov, Minimal convex uscos and monotone operators on small sets, Canad. J. Math. 43 (1991), no. 3, 461–476. MR 1118004, DOI 10.4153/CJM-1991-028-5
- J. M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987), no. 2, 517–527. MR 902782, DOI 10.1090/S0002-9947-1987-0902782-7 K. Buchner, Sard’s theorem on Banach manifolds. Topics in differential geometry. I, II, Colloq. Math. Soc. János Bolyai, vol. 46, North-Holland, Amsterdam, 1989. H. Busemann, Convex surfaces, Interscience, New York, 1955.
- Herbert Busemann and Willy Feller, Krümmungseigenschaften Konvexer Flächen, Acta Math. 66 (1936), no. 1, 1–47 (German). MR 1555408, DOI 10.1007/BF02546515
- Jens Peter Reus Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, Publ. Dép. Math. (Lyon) 10 (1973), no. 2, 29–39. MR 361770
- V. F. Dem′yanov, C. Lemaréchal, and J. Zowe, Approximation to a set-valued mapping. I. A proposal, Appl. Math. Optim. 14 (1986), no. 3, 203–214. MR 867718, DOI 10.1007/BF01442236
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- M. Fabián, Lipschitz smooth points of convex functions and isomorphic characterizations of Hilbert spaces, Proc. London Math. Soc. (3) 51 (1985), no. 1, 113–126. MR 788852, DOI 10.1112/plms/s3-51.1.113
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Simon Fitzpatrick and R. R. Phelps, Differentiability of the metric projection in Hilbert space, Trans. Amer. Math. Soc. 270 (1982), no. 2, 483–501. MR 645326, DOI 10.1090/S0002-9947-1982-0645326-5 —, Bounded approximants to monotone operators in Banach spaces (to appear).
- J.-B. Hiriart-Urruty, Lipschitz $r$-continuity of the approximate subdifferential of a convex function, Math. Scand. 47 (1980), no. 1, 123–134. MR 600082, DOI 10.7146/math.scand.a-11878
- J.-B. Hiriart-Urruty, Calculus rules on the approximate second-order directional derivative of a convex function, SIAM J. Control Optim. 22 (1984), no. 3, 381–404. MR 739833, DOI 10.1137/0322025
- J.-B. Hiriart-Urruty and A. Seeger, Calculus rules on a new set-valued second order derivative for convex functions, Nonlinear Anal. 13 (1989), no. 6, 721–738. MR 998516, DOI 10.1016/0362-546X(89)90090-4
- J.-B. Hiriart-Urruty and A. Seeger, The second-order subdifferential and the Dupin indicatrices of a nondifferentiable convex function, Proc. London Math. Soc. (3) 58 (1989), no. 2, 351–365. MR 977481, DOI 10.1112/plms/s3-58.2.351 —, Complément de Schur et sous-différentiel du second ordre d’une fonction convexe (to appear).
- Nobuyuki Kato, On the second derivatives of convex functions on Hilbert spaces, Proc. Amer. Math. Soc. 106 (1989), no. 3, 697–705. MR 960646, DOI 10.1090/S0002-9939-1989-0960646-4
- F. Mignot, Contrôle dans les inéquations variationelles elliptiques, J. Functional Analysis 22 (1976), no. 2, 130–185 (French). MR 0423155, DOI 10.1016/0022-1236(76)90017-3
- Jean-Jacques Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93 (1965), 273–299 (French). MR 201952
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
- A. S. Nemirovskiĭ, The polynomial approximation of functions on Hilbert space, Funkcional. Anal. i Priložen. 7 (1973), no. 4, 88–89 (Russian). MR 0632032
- Dominikus Noll, Second order differentiability of integral functionals on Sobolev spaces and $L^2$-spaces, J. Reine Angew. Math. 436 (1993), 1–17. MR 1207277, DOI 10.1515/crll.1993.436.1
- Dominikus Noll, Generic Gâteaux-differentiability of convex functions on small sets, J. Math. Anal. Appl. 147 (1990), no. 2, 531–544. MR 1050225, DOI 10.1016/0022-247X(90)90368-P
- Dominikus Noll, Generic Fréchet-differentiability of convex functions on small sets, Arch. Math. (Basel) 54 (1990), no. 5, 487–492. MR 1049204, DOI 10.1007/BF01188676
- Dominikus Noll, Generalized second fundamental form for Lipschitzian hypersurfaces by way of second epi derivatives, Canad. Math. Bull. 35 (1992), no. 4, 523–536. MR 1191513, DOI 10.4153/CMB-1992-069-5
- R. R. Phelps, Gaussian null sets and differentiability of Lipschitz map on Banach spaces, Pacific J. Math. 77 (1978), no. 2, 523–531. MR 510938
- Robert R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1989. MR 984602, DOI 10.1007/BFb0089089
- D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), no. 2, 312–345. MR 1058975, DOI 10.1016/0022-1236(90)90147-D
- R. T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 3, 167–184 (English, with French summary). MR 797269
- R. T. Rockafellar, Generalized second derivatives of convex functions and saddle functions, Trans. Amer. Math. Soc. 322 (1990), no. 1, 51–77. MR 1031242, DOI 10.1090/S0002-9947-1990-1031242-0 —, Conjugate duality and optimization, SIAM, Philadelphia, Pa., 1974.
- R. Tyrrell Rockafellar, Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives, Math. Oper. Res. 14 (1989), no. 3, 462–484. MR 1008425, DOI 10.1287/moor.14.3.462
- Gabriella Salinetti and Roger J.-B. Wets, On the relations between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), no. 1, 211–226. MR 479398, DOI 10.1016/0022-247X(77)90060-9
- Josef Stoer and Christoph Witzgall, Convexity and optimization in finite dimensions. I, Die Grundlehren der mathematischen Wissenschaften, Band 163, Springer-Verlag, New York-Berlin, 1970. MR 0286498 J. Vanderwerff, Smooth approximation in Banach spaces (to appear).
- R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32–45. MR 196599, DOI 10.1090/S0002-9947-1966-0196599-8
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 43-81
- MSC: Primary 46G05; Secondary 26E15
- DOI: https://doi.org/10.1090/S0002-9947-1994-1145959-4
- MathSciNet review: 1145959