Harmonic diffeomorphisms of the hyperbolic plane
HTML articles powered by AMS MathViewer
- by Kazuo Akutagawa
- Trans. Amer. Math. Soc. 342 (1994), 325-342
- DOI: https://doi.org/10.1090/S0002-9947-1994-1147398-9
- PDF | Request permission
Abstract:
In this paper, we consider the Dirichlet problem at infinity for harmonic maps between the Poincaré model D of the hyperbolic plane ${\mathbb {H}^2}$, and solve this when given boundary data are ${C^4}$ immersions of $D(\infty )$, the boundary at infinity of D, to $D(\infty )$. Also, we present a construction of nonconformal harmonic diffeomorphisms of D, and give a complete description of the boundary behavior, including their first derivatives.References
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197
- Kazuo Akutagawa, The Dirichlet problem at infinity for harmonic mappings between Hadamard manifolds, Geometry of manifolds (Matsumoto, 1988) Perspect. Math., vol. 8, Academic Press, Boston, MA, 1989, pp. 59–70. MR 1040517
- Kazuo Akutagawa and Seiki Nishikawa, The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski $3$-space, Tohoku Math. J. (2) 42 (1990), no. 1, 67–82. MR 1036474, DOI 10.2748/tmj/1178227694
- Kazuo Akutagawa and Atsushi Tachikawa, Nonexistence results for harmonic maps between noncompact complete Riemannian manifolds, Tokyo J. Math. 16 (1993), no. 1, 131–145. MR 1223292, DOI 10.3836/tjm/1270128986
- Michael T. Anderson and Richard Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. (2) 121 (1985), no. 3, 429–461. MR 794369, DOI 10.2307/1971181 P. Avilés, H.I. Choi, and M. J. Micallef, Boundary behavior of harmonic maps of non-smooth domains and complete negatively curved manifolds, Preprint.
- Hyeong In Choi and Andrejs Treibergs, New examples of harmonic diffeomorphisms of the hyperbolic plane onto itself, Manuscripta Math. 62 (1988), no. 2, 249–256. MR 963010, DOI 10.1007/BF01278983
- Hyeong In Choi and Andrejs Treibergs, Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space, J. Differential Geom. 32 (1990), no. 3, 775–817. MR 1078162
- P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. MR 336648
- Richard S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics, Vol. 471, Springer-Verlag, Berlin-New York, 1975. MR 0482822
- Stéfan Hildebrandt, Helmut Kaul, and Kjell-Ove Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), no. 1-2, 1–16. MR 433502, DOI 10.1007/BF02392311
- Willi Jäger and Helmut Kaul, Uniqueness and stability of harmonic maps and their Jacobi fields, Manuscripta Math. 28 (1979), no. 1-3, 269–291. MR 535705, DOI 10.1007/BF01647975
- Jürgen Jost, Harmonic maps between surfaces, Lecture Notes in Mathematics, vol. 1062, Springer-Verlag, Berlin, 1984. MR 754769, DOI 10.1007/BFb0100160
- Jürgen Jost and Hermann Karcher, Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen, Manuscripta Math. 40 (1982), no. 1, 27–77 (German, with English summary). MR 679120, DOI 10.1007/BF01168235
- Peter Li and Luen-Fai Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105 (1991), no. 1, 1–46. MR 1109619, DOI 10.1007/BF01232256
- Peter Li and Luen-Fai Tam, Uniqueness and regularity of proper harmonic maps, Ann. of Math. (2) 137 (1993), no. 1, 167–201. MR 1200080, DOI 10.2307/2946622
- Tilla Klotz Milnor, Harmonic maps and classical surface theory in Minkowski $3$-space, Trans. Amer. Math. Soc. 280 (1983), no. 1, 161–185. MR 712254, DOI 10.1090/S0002-9947-1983-0712254-7
- Richard Schoen and Shing Tung Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978), no. 3, 265–278. MR 478219, DOI 10.1007/BF01403164
- Atsushi Tachikawa, Harmonic mappings from $\textbf {R}^m$ into an Hadamard manifold, J. Math. Soc. Japan 42 (1990), no. 1, 147–153. MR 1027547, DOI 10.2969/jmsj/04210147
- Andrejs E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math. 66 (1982), no. 1, 39–56. MR 652645, DOI 10.1007/BF01404755
- Peter Li and Luen-Fai Tam, Uniqueness and regularity of proper harmonic maps. II, Indiana Univ. Math. J. 42 (1993), no. 2, 591–635. MR 1237061, DOI 10.1512/iumj.1993.42.42027
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 325-342
- MSC: Primary 58E20; Secondary 58G20
- DOI: https://doi.org/10.1090/S0002-9947-1994-1147398-9
- MathSciNet review: 1147398