A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold
HTML articles powered by AMS MathViewer
- by Bruce K. Driver
- Trans. Amer. Math. Soc. 342 (1994), 375-395
- DOI: https://doi.org/10.1090/S0002-9947-1994-1154540-2
- PDF | Request permission
Abstract:
The results in Driver [13] for quasi-invariance of Wiener measure on the path space of a compact Riemannian manifold (M) are extended to the case of pinned Wiener measure. To be more explicit, let $h:[0,1] \to {T_0}M$ be a ${C^1}$ function where M is a compact Riemannian manifold, $o \in M$ is a base point, and ${T_o}M$ is the tangent space to M at $o \in M$. Let $W(M)$ be the space of continuous paths from [0,1] into M, $\nu$ be Wiener measure on $W(M)$ concentrated on paths starting at $o \in M$, and ${H_s}(\omega )$ denote the stochastic-parallel translation operator along a path $\omega \in W(M)$ up to "time" s. (Note: ${H_s}(\omega )$ is only well defined up to $\nu$-equivalence.) For $\omega \in W(M)$ let ${X^h}(\omega )$ denote the vector field along $\omega$ given by $X_s^h(\omega ) \equiv {H_s}(\omega )h(s)$ for each $s \in [0,1]$. One should interpret ${X^h}$ as a vector field on $W(M)$. The vector field ${X^h}$ induces a flow ${S^h}(t, \bullet ):W(M) \to W(M)$ which leaves Wiener measure $(\nu )$ quasi-invariant, see Driver [13]. It is shown in this paper that the same result is valid if $h(1) = 0$ and the Wiener measure $(\nu )$ is replaced by a pinned Wiener measure $({\nu _e})$. (The measure ${\nu _e}$ is proportional to the measure $\nu$ conditioned on the set of paths which start at $o \in M$ and end at a fixed end point $e \in M$.) Also as in [13], one gets an integration by parts formula for the vector-fields ${X^h}$ defined above.References
- H. Airault and P. Malliavin, Integration on loop groups. II. Heat equation for the Wiener measure, J. Funct. Anal. 104 (1992), no. 1, 71–109. MR 1152460, DOI 10.1016/0022-1236(92)90091-V
- Sergio Albeverio and Raphael Høegh-Krohn, The energy representation of Sobolev-Lie groups, Compositio Math. 36 (1978), no. 1, 37–51. MR 515036
- Jean-Michel Bismut, Mécanique aléatoire, Lecture Notes in Mathematics, vol. 866, Springer-Verlag, Berlin-New York, 1981 (French). With an English summary. MR 629977
- Jean-Michel Bismut, Large deviations and the Malliavin calculus, Progress in Mathematics, vol. 45, Birkhäuser Boston, Inc., Boston, MA, 1984. MR 755001
- Pierre Brémaud and Marc Yor, Changes of filtrations and of probability measures, Z. Wahrsch. Verw. Gebiete 45 (1978), no. 4, 269–295. MR 511775, DOI 10.1007/BF00537538
- Robert H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc. 2 (1951), 914–924. MR 45937, DOI 10.1090/S0002-9939-1951-0045937-X
- R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations, Ann. of Math. (2) 45 (1944), 386–396. MR 10346, DOI 10.2307/1969276
- R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under a general class of linear transformations, Trans. Amer. Math. Soc. 58 (1945), 184–219. MR 13240, DOI 10.1090/S0002-9947-1945-0013240-1
- R. H. Cameron and W. T. Martin, The transformation of Wiener integrals by nonlinear transformations, Trans. Amer. Math. Soc. 66 (1949), 253–283. MR 31196, DOI 10.1090/S0002-9947-1949-0031196-6
- Jeff Cheeger and Shing Tung Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), no. 4, 465–480. MR 615626, DOI 10.1002/cpa.3160340404
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1990. MR 1103113
- Joseph L. Doob, Classical potential theory and its probabilistic counterpart, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1984 edition. MR 1814344, DOI 10.1007/978-3-642-56573-1
- Bruce K. Driver, A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold, J. Funct. Anal. 110 (1992), no. 2, 272–376. MR 1194990, DOI 10.1016/0022-1236(92)90035-H
- Michel Émery, Stochastic calculus in manifolds, Universitext, Springer-Verlag, Berlin, 1989. With an appendix by P.-A. Meyer. MR 1030543, DOI 10.1007/978-3-642-75051-9 Epperson and Lohrenz, Brownian motion on the path space of a compact Lie group, Rice Univ. preprint, 1991.
- I. B. Frenkel, Orbital theory for affine Lie algebras, Invent. Math. 77 (1984), no. 2, 301–352. MR 752823, DOI 10.1007/BF01388449
- I. V. Girsanov, On transforming a class of stochastic processes by absolutely continuous substitution of measures, Teor. Verojatnost. i Primenen. 5 (1960), 314–330 (Russian, with English summary). MR 0133152
- Peter B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series, vol. 11, Publish or Perish, Inc., Wilmington, DE, 1984. MR 783634
- Leonard Gross, Integration and nonlinear transformations in Hilbert space, Trans. Amer. Math. Soc. 94 (1960), 404–440. MR 112025, DOI 10.1090/S0002-9947-1960-0112025-3
- Leonard Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 31–42. MR 0212152
- Leonard Gross, Logarithmic Sobolev inequalities for the heat kernel on a Lie group, White noise analysis (Bielefeld, 1989) World Sci. Publ., River Edge, NJ, 1990, pp. 108–130. MR 1160389
- Leonard Gross, Logarithmic Sobolev inequalities on loop groups, J. Funct. Anal. 102 (1991), no. 2, 268–313. MR 1140628, DOI 10.1016/0022-1236(91)90123-M
- Richard S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113–126. MR 1230276, DOI 10.4310/CAG.1993.v1.n1.a6
- Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
- J. D. S. Jones and R. Léandre, $L^p$-Chen forms on loop spaces, Stochastic analysis (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 167, Cambridge Univ. Press, Cambridge, 1991, pp. 103–162. MR 1166409, DOI 10.1017/CBO9780511662980.006
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- Hui Hsiung Kuo, Integration theory on infinite-dimensional manifolds, Trans. Amer. Math. Soc. 159 (1971), 57–78. MR 295393, DOI 10.1090/S0002-9947-1971-0295393-9
- Hui Hsiung Kuo, Diffusion and Brownian motion on infinite-dimensional manifolds, Trans. Amer. Math. Soc. 169 (1972), 439–459. MR 309206, DOI 10.1090/S0002-9947-1972-0309206-0
- Hui Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, Vol. 463, Springer-Verlag, Berlin-New York, 1975. MR 0461643
- Shigeo Kusuoka, The nonlinear transformation of Gaussian measure on Banach space and absolute continuity. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 3, 567–597. MR 687592
- S. Kusuoka, On the foundations of Wiener-Riemannian manifolds, Stochastic analysis, path integration and dynamics (Warwick, 1987) Pitman Res. Notes Math. Ser., vol. 200, Longman Sci. Tech., Harlow, 1989, pp. 130–164. MR 1020067 —, Analysis on Wiener spaces. I: Nonlinear maps, R.I.M.S. report 670, 1989. —, Analysis on Wiener spaces. II: Differential forms, R.I.M.S. report 705, 1990.
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Marie-Paule Malliavin and Paul Malliavin, Integration on loop groups. I. Quasi invariant measures, J. Funct. Anal. 93 (1990), no. 1, 207–237. MR 1070039, DOI 10.1016/0022-1236(90)90139-C
- Marie-Paule Malliavin and Paul Malliavin, Integration on loop group. III. Asymptotic Peter-Weyl orthogonality, J. Funct. Anal. 108 (1992), no. 1, 13–46. MR 1174157, DOI 10.1016/0022-1236(92)90145-9 —, La representation reguliere des groupes de lacets, Proc. Conf. Trientenaire 1990, Hamburg Math. Sem., in the Third Centenary Anniversary of Hamburg University. —, An infinitesimally quasi invariant measure on the group of diffeomorphisms of the circle, Proc. Hashibara Forum (M. Kashiwara and T. Miwa, eds.), 1991. P. Malliavin, Naturality of quasi-invariance of some measures, Proc. Lisbonne Conf., Birkhäuser (A. B. Cruzerio, ed.). —, Hypoellipticity in infinite dimension, Diffusion Process and Related Problems in Analysis, Vol I. (M. A. Pinsky, ed.), Birkhäuser, 1991.
- Paul Malliavin, Diffusion on the loops, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 764–782. MR 730108
- Gisiro Maruyama, Notes on Wiener integrals, K\B{o}dai Math. Sem. Rep. 2 (1950), 41–44. {Volume numbers not printed on issues until Vol. 7 (1955)}. MR 38020
- J. R. Norris, Path integral formulae for heat kernels and their derivatives, Probab. Theory Related Fields 94 (1993), no. 4, 525–541. MR 1201558, DOI 10.1007/BF01192562
- Philip Protter, Stochastic integration and differential equations, Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 1990. A new approach. MR 1037262, DOI 10.1007/978-3-662-02619-9
- Roald Ramer, On nonlinear transformations of Gaussian measures, J. Functional Analysis 15 (1974), 166–187. MR 0349945, DOI 10.1016/0022-1236(74)90017-2
- Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1991. MR 1083357, DOI 10.1007/978-3-662-21726-9
- John Roe, Elliptic operators, topology and asymptotic methods, Pitman Research Notes in Mathematics Series, vol. 179, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. MR 960889
- L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 2, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1987. Itô calculus. MR 921238 A. Setti, Eigenvalue estimates for the Laplacian with lower order terms on a complete Riemannian manifold, Cornell Univ. preprint, 1990.
- C. Stricker and M. Yor, Calcul stochastique dépendant d’un paramètre, Z. Wahrsch. Verw. Gebiete 45 (1978), no. 2, 109–133 (French). MR 510530, DOI 10.1007/BF00715187
- Daniel W. Stroock, Lectures on topics in stochastic differential equations, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 68, Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York, 1982. With notes by Satyajit Karmakar. MR 685758
- Daniel W. Stroock, Lectures on stochastic analysis: diffusion theory, London Mathematical Society Student Texts, vol. 6, Cambridge University Press, Cambridge, 1987. MR 884711, DOI 10.1017/CBO9780511623752
- Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
- N. Th. Varopoulos, Small time Gaussian estimates of heat diffusion kernels. I. The semigroup technique, Bull. Sci. Math. 113 (1989), no. 3, 253–277. MR 1016211
- N. Th. Varopoulos, Small time Gaussian estimates of heat diffusion kernels. II. The theory of large deviations, J. Funct. Anal. 93 (1990), no. 1, 1–33. MR 1070036, DOI 10.1016/0022-1236(90)90136-9
- Th. Jeulin and M. Yor (eds.), Grossissements de filtrations: exemples et applications, Lecture Notes in Mathematics, vol. 1118, Springer-Verlag, Berlin, 1985 (French). Papers from the seminar on stochastic calculus held at the Université de Paris VI, Paris, 1982/1983. MR 884713, DOI 10.1007/BFb0075765
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 375-395
- MSC: Primary 60J65; Secondary 58G32
- DOI: https://doi.org/10.1090/S0002-9947-1994-1154540-2
- MathSciNet review: 1154540