## Infinite families of isomorphic nonconjugate finitely generated subgroups

HTML articles powered by AMS MathViewer

- by F. E. A. Johnson PDF
- Trans. Amer. Math. Soc.
**342**(1994), 397-406 Request permission

## Abstract:

Let $\langle \;,\;\rangle :L \times L \to \mathbb {Z}$ be a nondegenerate symmetric bilinear form on a finitely generated free abelian group*L*which splits as an orthogonal direct sum $(L,\;\langle \;,\;\rangle ) \cong ({L_1},\;\langle \;,\;\rangle ) \bot ({L_2},\;\langle \;,\;\rangle ) \bot ({L_3},\;\langle \;,\;\rangle )$ in which $({L_1},\;\langle \;,\;\rangle )$ has signature (2, 1), $({L_2},\;\langle \;,\;\rangle )$ has signature (

*n*, 1) with $n \geq 2$, and $({L_3},\;\langle \;,\;\rangle )$ is either zero or indefinite with ${\text {rk}}_\mathbb {Z}({L_3}) \geq 3$. We show that the integral automorphism group ${\operatorname {Aut} _\mathbb {Z}}(L,\;\langle \;,\;\rangle )$ contains an infinite family of mutually isomorphic finitely generated subgroups ${({\Gamma _\sigma })_{\sigma \in \Sigma }}$, no two of which are conjugate. In the simplest case, when ${L_3} = 0$, the groups ${\Gamma _\sigma }$ are all normal subdirect products in a product of free groups or surface groups. The result can be seen as a failure of the rigidity property for subgroups of infinite covolume within the corresponding Lie group ${\operatorname {Aut} _\mathbb {Z}}(L{ \otimes _\mathbb {Z}}\mathbb {R},\;\langle \;,\;\rangle \otimes 1)$.

## References

- Armand Borel,
*Density properties for certain subgroups of semi-simple groups without compact components*, Ann. of Math. (2)**72**(1960), 179–188. MR**123639**, DOI 10.2307/1970150 - Armand Borel,
*Linear algebraic groups*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR**0251042** - F. E. A. Johnson,
*On normal subgroups of direct products*, Proc. Edinburgh Math. Soc. (2)**33**(1990), no. 2, 309–319. MR**1057758**, DOI 10.1017/S0013091500018228
D. A. Kahzdan, - John J. Millson,
*On the first Betti number of a constant negatively curved manifold*, Ann. of Math. (2)**104**(1976), no. 2, 235–247. MR**422501**, DOI 10.2307/1971046 - Jakob Nielsen,
*Die Isomorphismengruppe der freien Gruppen*, Math. Ann.**91**(1924), no. 3-4, 169–209 (German). MR**1512188**, DOI 10.1007/BF01556078 - André Weil,
*The field of definition of a variety*, Amer. J. Math.**78**(1956), 509–524. MR**82726**, DOI 10.2307/2372670

*On the connection between the dual space of a group and the structure of its closed subgroups*, Functional Anal. Appl.

**1**(1967), 63-65. A. Meyer,

*Zur Theorie der indefiniten quadratischen Formen*, J. Reine Angew. Math. (1891), 125-139.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**342**(1994), 397-406 - MSC: Primary 20E07
- DOI: https://doi.org/10.1090/S0002-9947-1994-1154542-6
- MathSciNet review: 1154542