Noncharacteristic embeddings of the $n$-dimensional torus in the $(n+2)$-dimensional torus
HTML articles powered by AMS MathViewer
- by David Miller
- Trans. Amer. Math. Soc. 342 (1994), 215-240
- DOI: https://doi.org/10.1090/S0002-9947-1994-1179398-7
- PDF | Request permission
Abstract:
We construct certain exotic embeddings of the n-torus ${T^n}$ in ${T^{n + 2}}$ in the standard homotopy class. We turn an embedding $f:{T^n} \to {T^{n + 2}}$ characteristic if there exists some map $\alpha :{T^{n + 2}} \to {T^{n + 2}}$ in the standard homotopy class with the property that $\alpha \; \circ \;f:{T^n} \to {T^{n + 2}}$ is the standard coordinate inclusion and $\alpha ({T^{n + 2}} - f({T^n})) \subset {T^{n + 2}} - {T^n}$. We find examples of noncharacteristic embeddings, f, in dimensions $n = 4k + 1$, $n \geq 5$, and show that these examples are not even cobordant to characteristic embeddings. We let G denote the fundamental group of the complement of the standard coordinate inclusion, ${T^{n + 2}} - {T^n}$. Then we can associate to f a real-valued signature function on the set of j-dimensional unitary representations of $\bar G$, where $\bar G$ denotes the fundamental group of the localization of ${T^{n + 2}} - {T^n}$ with respect to homology with local coefficients in $\mathbb {Z}[{\mathbb {Z}^{n + 2}}]$. This function is a cobordism invariant which has certain periodicity properties for characteristic embeddings. We verify that this periodicity does not hold for our examples, f, implying that they are not characteristic. Additional results include a proof that the examples, f, become cobordant to characteristic embeddings upon taking the cartesian product with the identity map on a circle.References
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43โ69. MR 397797, DOI 10.1017/S0305004100049410
- A. K. Bousfield, Homological localization towers for groups and $\Pi$-modules, Mem. Amer. Math. Soc. 10 (1977), no.ย 186, vii+68. MR 447375, DOI 10.1090/memo/0186
- A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133โ150. MR 380779, DOI 10.1016/0040-9383(75)90023-3
- Sylvain E. Cappell and Julius L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974), 277โ348. MR 339216, DOI 10.2307/1970901
- Sylvain E. Cappell and Julius L. Shaneson, Link cobordism, Comment. Math. Helv. 55 (1980), no.ย 1, 20โ49. MR 569244, DOI 10.1007/BF02566673
- Sylvain E. Cappell and Julius L. Shaneson, An introduction to embeddings, immersions and singularities in codimension two, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp.ย 129โ149. MR 520529
- T. D. Cochran and K. E. Orr, Not all links are concordant to boundary links, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no.ย 1, 99โ106. MR 1031581, DOI 10.1090/S0273-0979-1990-15912-9 โ, Not all links are concordant to boundary links, preprint.
- Wu-chung Hsiang and Julius L. Shaneson, Fake tori, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp.ย 18โ51. MR 0281211 J. Le Dimet, Cobordisme dโenlacement de disques, Mem. Math. France 116 (1988).
- J. Levine, Finitely-presented groups with long lower central series, Israel J. Math. 73 (1991), no.ย 1, 57โ64. MR 1119927, DOI 10.1007/BF02773424
- J. P. Levine, Link concordance and algebraic closure. II, Invent. Math. 96 (1989), no.ย 3, 571โ592. MR 996555, DOI 10.1007/BF01393697 โ, Signature invariants of homology bordism with applications to links, Proc. Osaka Knot Theory Conf.
- J. P. Levine, Link concordance and algebraic closure of groups, Comment. Math. Helv. 64 (1989), no.ย 2, 236โ255. MR 997364, DOI 10.1007/BF02564673
- J. P. Levine, Algebraic closure of groups, Combinatorial group theory (College Park, MD, 1988) Contemp. Math., vol. 109, Amer. Math. Soc., Providence, RI, 1990, pp.ย 99โ105. MR 1076380, DOI 10.1090/conm/109/10 โ, Link invariants via the eta invariant, preprint. Pierre Vogel, Localization of spaces with respect to a class of maps, preprint.
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 215-240
- MSC: Primary 57Q60; Secondary 57Q35, 57Q45
- DOI: https://doi.org/10.1090/S0002-9947-1994-1179398-7
- MathSciNet review: 1179398