Vaught’s conjecture for varieties
HTML articles powered by AMS MathViewer
- by Bradd Hart, Sergei Starchenko and Matthew Valeriote
- Trans. Amer. Math. Soc. 342 (1994), 173-196
- DOI: https://doi.org/10.1090/S0002-9947-1994-1191612-0
- PDF | Request permission
Abstract:
We prove that if $\mathcal {V}$ is a superstable variety or one with few countable models then $\mathcal {V}$ is the varietal product of an affine variety and a combinatorial variety. Vaught’s conjecture for varieties is an immediate consequence.References
- J. T. Baldwin and A. H. Lachlan, On universal Horn classes categorical in some infinte power, Algebra Universalis 3 (1973), 98–111. MR 351785, DOI 10.1007/BF02945108
- John T. Baldwin and Ralph N. McKenzie, Counting models in universal Horn classes, Algebra Universalis 15 (1982), no. 3, 359–384. MR 689770, DOI 10.1007/BF02483731
- Walter Baur, $\aleph _{0}$-categorical modules, J. Symbolic Logic 40 (1975), 213–220. MR 369047, DOI 10.2307/2271901
- Saharon Shelah and Steven Buechler, On the existence of regular types, Ann. Pure Appl. Logic 45 (1989), no. 3, 277–308. MR 1032833, DOI 10.1016/0168-0072(89)90039-0
- Steven Garavaglia, Decomposition of totally transcendental modules, J. Symbolic Logic 45 (1980), no. 1, 155–164. MR 560233, DOI 10.2307/2273362
- Steven Givant, Universal Horn classes categorical or free in power, Ann. Math. Logic 15 (1978), no. 1, 1–53. MR 511942, DOI 10.1016/0003-4843(78)90025-6
- Steven Givant, A representation theorem for universal Horn classes categorical in power, Ann. Math. Logic 17 (1979), no. 1-2, 91–116. MR 552417, DOI 10.1016/0003-4843(79)90022-6
- L. Harrington and M. Makkai, An exposition of Shelah’s “main gap”: counting uncountable models of $\omega$-stable and superstable theories, Notre Dame J. Formal Logic 26 (1985), no. 2, 139–177. MR 783594, DOI 10.1305/ndjfl/1093870822
- Christian Herrmann, Affine algebras in congruence modular varieties, Acta Sci. Math. (Szeged) 41 (1979), no. 1-2, 119–125. MR 534504
- Bradd Hart and Sergei Starchenko, Addendum to: “A structure theorem for strongly abelian varieties with few models” [J. Symbolic Logic 56 (1991), no. 3, 832–852; MR1129148 (93a:03031)] by Hart and Matthew Valeriote, J. Symbolic Logic 58 (1993), no. 4, 1419–1425. MR 1253930, DOI 10.2307/2275151
- Bradd Hart and Matthew Valeriote, A structure theorem for strongly abelian varieties with few models, J. Symbolic Logic 56 (1991), no. 3, 832–852. MR 1129148, DOI 10.2307/2275053
- Bradd Hart, An exposition of OTOP, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 107–126. MR 1033025, DOI 10.1007/BFb0082234
- David Hobby and Ralph McKenzie, The structure of finite algebras, Contemporary Mathematics, vol. 76, American Mathematical Society, Providence, RI, 1988. MR 958685, DOI 10.1090/conm/076
- D. Lascar, Quelques précisions sur la DOP et la profondeur d’une théorie, J. Symbolic Logic 50 (1985), no. 2, 316–330 (French, with English summary). MR 793109, DOI 10.2307/2274217
- Ralph McKenzie, Categorical quasivarieties revisited, Algebra Universalis 19 (1984), no. 3, 273–303. MR 779145, DOI 10.1007/BF01201096
- Ralph McKenzie and Matthew Valeriote, The structure of decidable locally finite varieties, Progress in Mathematics, vol. 79, Birkhäuser Boston, Inc., Boston, MA, 1989. MR 1033992, DOI 10.1007/978-1-4612-4552-0
- T. G. Mustafin, The stability theory of polygons, Trudy Inst. Mat. (Novosibirsk) 8 (1988), no. Teor. Model. i ee Primenen., 92–108, 184 (Russian). MR 957500
- E. A. Paljutin, Categorical positive Horn theories, Algebra i Logika 18 (1979), no. 1, 47–72, 122 (Russian). MR 566774 —, The description of categorical quasivarieties, Algebra and Logic 14 (1976), 86-111.
- E. A. Palyutin, Spectra of varieties, Dokl. Akad. Nauk SSSR 306 (1989), no. 4, 789–790 (Russian); English transl., Soviet Math. Dokl. 39 (1989), no. 3, 553–554. MR 1014745
- E. A. Palyutin and S. S. Starchenko, Spectra of Horn classes, Dokl. Akad. Nauk SSSR 290 (1986), no. 6, 1298–1300 (Russian). MR 866207
- Robert W. Quackenbush, Quasi-affine algebras, Algebra Universalis 20 (1985), no. 3, 318–327. MR 811692, DOI 10.1007/BF01195141
- S. Shelah, Classification theory and the number of nonisomorphic models, 2nd ed., Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, 1990. MR 1083551
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 173-196
- MSC: Primary 03C45; Secondary 03C05, 03C60, 08B99
- DOI: https://doi.org/10.1090/S0002-9947-1994-1191612-0
- MathSciNet review: 1191612