Intersection bodies and the Busemann-Petty problem
HTML articles powered by AMS MathViewer
- by R. J. Gardner
- Trans. Amer. Math. Soc. 342 (1994), 435-445
- DOI: https://doi.org/10.1090/S0002-9947-1994-1201126-7
- PDF | Request permission
Abstract:
It is proved that the answer to the Busemann-Petty problem concerning central sections of centrally symmetric convex bodies in d-dimensional Euclidean space ${\mathbb {E}^d}$ is negative for a given d if and only if certain centrally symmetric convex bodies exist in ${\mathbb {E}^d}$ which are not intersection bodies. It is also shown that a cylinder in ${\mathbb {E}^d}$ is an intersection body if and only if $d \leq 4$, and that suitably smooth axis-convex bodies of revolution are intersection bodies when $d \leq 4$. These results show that the Busemann-Petty problem has a negative answer for $d \geq 5$ and a positive answer for $d = 3$ and $d = 4$ when the body with smaller sections is a body of revolution.References
- Keith Ball, Some remarks on the geometry of convex sets, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 224–231. MR 950983, DOI 10.1007/BFb0081743
- Marcel Berger, Convexity, Amer. Math. Monthly 97 (1990), no. 8, 650–678. MR 1072810, DOI 10.2307/2324573
- J. Bourgain, On the Busemann-Petty problem for perturbations of the ball, Geom. Funct. Anal. 1 (1991), no. 1, 1–13. MR 1091609, DOI 10.1007/BF01895416
- J. Bourgain and J. Lindenstrauss, Projection bodies, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 250–270. MR 950986, DOI 10.1007/BFb0081746
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- Herbert Busemann, Volume in terms of concurrent cross-sections, Pacific J. Math. 3 (1953), 1–12. MR 55712
- Herbert Busemann, Volumes and areas of cross-sections, Amer. Math. Monthly 67 (1960), 248–250. MR 120562, DOI 10.2307/2309685
- H. Busemann and C. M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88–94. MR 84791, DOI 10.7146/math.scand.a-10457
- Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved problems in geometry, Problem Books in Mathematics, Springer-Verlag, New York, 1991. Unsolved Problems in Intuitive Mathematics, II. MR 1107516, DOI 10.1007/978-1-4612-0963-8
- P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien, Math. Ann. 74 (1913), no. 2, 278–300 (German). MR 1511763, DOI 10.1007/BF01456044
- R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), no. 2, 435–447. MR 1298719, DOI 10.2307/2118606
- Apostolos A. Giannopoulos, A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies, Mathematika 37 (1990), no. 2, 239–244. MR 1099772, DOI 10.1112/S002557930001295X
- M. Giertz, A note on a problem of Busemann, Math. Scand. 25 (1969), 145–148 (1970). MR 262929, DOI 10.7146/math.scand.a-10951 P. R. Goodey, E. Lutwak and W. Weil, Functional analytic characterizations of classes of convex bodies (to appear).
- Eric L. Grinberg, Spherical harmonics and integral geometry on projective spaces, Trans. Amer. Math. Soc. 279 (1983), no. 1, 187–203. MR 704609, DOI 10.1090/S0002-9947-1983-0704609-1
- Eric L. Grinberg and Igor Rivin, Infinitesimal aspects of the Busemann-Petty problem, Bull. London Math. Soc. 22 (1990), no. 5, 478–484. MR 1082020, DOI 10.1112/blms/22.5.478
- H. Hadwiger, Radialpotenzintegrale zentralsymmetrischer Rotations-körper und Ungleichheitsaussagen Busemannscher Art, Math. Scand. 23 (1969), 193–200 (1969) (German). MR 254739, DOI 10.7146/math.scand.a-10911
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Sigurdur Helgason, The totally-geodesic Radon transform on constant curvature spaces, Integral geometry and tomography (Arcata, CA, 1989) Contemp. Math., vol. 113, Amer. Math. Soc., Providence, RI, 1990, pp. 141–149. MR 1108651, DOI 10.1090/conm/113/1108651 V. L. Klee, Ungelöstes Problem Nr. 44, Elem. Math. 17 (1962), 84. S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. 2, Wiley, New York, 1969.
- D. G. Larman and C. A. Rogers, The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika 22 (1975), no. 2, 164–175. MR 390914, DOI 10.1112/S0025579300006033
- Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. MR 963487, DOI 10.1016/0001-8708(88)90077-1
- Erwin Lutwak, On some ellipsoid formulas of Busemann, Furstenberg and Tzkoni, Guggenheimer, and Petty, J. Math. Anal. Appl. 159 (1991), no. 1, 18–26. MR 1119418, DOI 10.1016/0022-247X(91)90218-O
- V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717, DOI 10.1007/BFb0090049
- V. I. Oliker, Hypersurfaces in $\textbf {R}^{n+1}$ with prescribed Gaussian curvature and related equations of Monge-Ampère type, Comm. Partial Differential Equations 9 (1984), no. 8, 807–838. MR 748368, DOI 10.1080/03605308408820348
- Michael Papadimitrakis, On the Busemann-Petty problem about convex, centrally symmetric bodies in $\mathbf R^n$, Mathematika 39 (1992), no. 2, 258–266. MR 1203282, DOI 10.1112/S0025579300014996
- C. M. Petty, Centroid surfaces, Pacific J. Math. 11 (1961), 1535–1547. MR 133733
- Rolf Schneider, Functions on a sphere with vanishing integrals over certain subspheres, J. Math. Anal. Appl. 26 (1969), 381–384. MR 237723, DOI 10.1016/0022-247X(69)90160-7
- Rolf Schneider, Smooth approximation of convex bodies, Rend. Circ. Mat. Palermo (2) 33 (1984), no. 3, 436–440. MR 779946, DOI 10.1007/BF02844505
- Rolf Schneider and Wolfgang Weil, Zonoids and related topics, Convexity and its applications, Birkhäuser, Basel, 1983, pp. 296–317. MR 731116
- Shukichi Tanno, Central sections of centrally symmetric convex bodies, Kodai Math. J. 10 (1987), no. 3, 343–361. MR 929994, DOI 10.2996/kmj/1138037465 Gaoyong Zhang, Centered bodies and dual mixed volumes (to appear).
- Gao Yong Zhang, Intersection bodies and the four-dimensional Busemann-Petty problem, Internat. Math. Res. Notices 7 (1993), 233–240. MR 1230300, DOI 10.1155/S107379289300025X —, Intersection bodies and the Busemann-Petty inequalities in ${\mathbb {R}^n}$, Ann. of Math, (to appear).
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 435-445
- MSC: Primary 52A38; Secondary 52A40
- DOI: https://doi.org/10.1090/S0002-9947-1994-1201126-7
- MathSciNet review: 1201126