Wavelets of multiplicity $r$
HTML articles powered by AMS MathViewer
- by T. N. T. Goodman and S. L. Lee
- Trans. Amer. Math. Soc. 342 (1994), 307-324
- DOI: https://doi.org/10.1090/S0002-9947-1994-1232187-7
- PDF | Request permission
Abstract:
A multiresolution approximation ${({V_m})_{m \in {\mathbf {Z}}}}$ of ${L^2}({\mathbf {R}})$ is of multiplicity $r > 0$ if there are r functions ${\phi _1}, \ldots ,{\phi _r}$ whose translates form a Riesz basis for ${V_0}$. In the general theory we derive necessary and sufficient conditions for the translates of ${\phi _1}, \ldots ,{\phi _r},\;{\psi _1}, \ldots ,{\psi _r}$ to form a Riesz basis for ${V_1}$. The resulting reconstruction and decomposition sequences lead to the construction of dual bases for ${V_0}$ and its orthogonal complement ${W_0}$ in ${V_1}$. The general theory is applied in the construction of spline wavelets with multiple knots. Algorithms for the construction of these wavelets for some special cases are given.References
- C. deBoor, Splines as linear combination of B-splines, Approximation Theory II (G. Lorentz, C. Chui and L. Schumaker, eds.), Academic Press, New York, 1976, pp. 1-47.
- Carl de Boor, Total positivity of the spline collocation matrix, Indiana Univ. Math. J. 25 (1976), no. 6, 541–551. MR 415138, DOI 10.1512/iumj.1976.25.25043
- Charles K. Chui and Jian-zhong Wang, A cardinal spline approach to wavelets, Proc. Amer. Math. Soc. 113 (1991), no. 3, 785–793. MR 1077784, DOI 10.1090/S0002-9939-1991-1077784-X —, A general framework of compactly supported splines and wavelets, CAT Report #219, Texas A&M Univ., College Station, 1990.
- Ingrid Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. MR 951745, DOI 10.1002/cpa.3160410705
- T. N. T. Goodman, S. L. Lee, and W. S. Tang, Wavelets in wandering subspaces, Trans. Amer. Math. Soc. 338 (1993), no. 2, 639–654. MR 1117215, DOI 10.1090/S0002-9947-1993-1117215-0
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952, DOI 10.1007/978-1-4684-9330-6
- Pierre Gilles Lemarié, Ondelettes à localisation exponentielle, J. Math. Pures Appl. (9) 67 (1988), no. 3, 227–236 (French, with English summary). MR 964171
- Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\textbf {R})$, Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87. MR 1008470, DOI 10.1090/S0002-9947-1989-1008470-5
- J. B. Robertson, On wandering subspaces for unitary operators, Proc. Amer. Math. Soc. 16 (1965), 233–236. MR 174977, DOI 10.1090/S0002-9939-1965-0174977-5
- I. J. Schoenberg, Cardinal spline interpolation, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. MR 0420078, DOI 10.1137/1.9781611970555
- I. J. Schoenberg and Anne Whitney, On Pólya frequence functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves, Trans. Amer. Math. Soc. 74 (1953), 246–259. MR 53177, DOI 10.1090/S0002-9947-1953-0053177-X
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 307-324
- MSC: Primary 41A15; Secondary 41A30, 42C05, 42C15
- DOI: https://doi.org/10.1090/S0002-9947-1994-1232187-7
- MathSciNet review: 1232187