Projective resolutions and Poincaré duality complexes
HTML articles powered by AMS MathViewer
- by D. J. Benson and Jon F. Carlson
- Trans. Amer. Math. Soc. 342 (1994), 447-488
- DOI: https://doi.org/10.1090/S0002-9947-1994-1142778-X
- PDF | Request permission
Abstract:
Let k be a field lof characteristic $p > 0$ and let G be a finite group. We investigate the structure of the cohomology ring ${H^\ast }(G,k)$ in relation to certain spectral sequences determined by systems of homogeneous parameters for the cohomology ring. Each system of homogeneous parameters is associated to a complex of projective kG-modules which is homotopically equivalent to a Poincaré duality complex. The initial differentials in the hypercohomology spectral sequence of the complex are multiplications by the parameters, while the higher differentials are matric Massey products. If the cohomology ring is Cohen-Macaulay, then the duality of the complex assures that the Poincaré series for the cohomology satisfies a certain functional equation. The structure of the complex also implies the existence of cohomology classes which are in relatively large degrees but are not in the ideal generated by the parameters. We consider several other questions concerned with the minimal projective resolutions and the convergence of the spectral sequence.References
- Alejandro Adem and R. James Milgram, $\scr A_5$-invariants, the cohomology of $L_3(4)$ and related extensions, Proc. London Math. Soc. (3) 66 (1993), no. 1, 187–224. MR 1189097, DOI 10.1112/plms/s3-66.1.187
- George S. Avrunin and Leonard L. Scott, Quillen stratification for modules, Invent. Math. 66 (1982), no. 2, 277–286. MR 656624, DOI 10.1007/BF01389395
- David J. Benson and Jon F. Carlson, Diagrammatic methods for modular representations and cohomology, Comm. Algebra 15 (1987), no. 1-2, 53–121. MR 876974, DOI 10.1080/00927878708823414
- David J. Benson and Jon F. Carlson, Complexity and multiple complexes, Math. Z. 195 (1987), no. 2, 221–238. MR 892053, DOI 10.1007/BF01166459
- D. J. Benson, J. F. Carlson, and G. R. Robinson, On the vanishing of group cohomology, J. Algebra 131 (1990), no. 1, 40–73. MR 1054998, DOI 10.1016/0021-8693(90)90165-K
- D. J. Benson and Jon F. Carlson, Products in negative cohomology, J. Pure Appl. Algebra 82 (1992), no. 2, 107–129. MR 1182934, DOI 10.1016/0022-4049(92)90116-W
- Jon F. Carlson, Products and projective resolutions, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 399–408. MR 933376, DOI 10.1090/pspum/047.1/933376
- Jon F. Carlson, Projective resolutions and degree shifting for cohomology and group rings, Representations of algebras and related topics (Kyoto, 1990) London Math. Soc. Lecture Note Ser., vol. 168, Cambridge Univ. Press, Cambridge, 1992, pp. 80–126. MR 1211478
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- Thomas Diethelm, The $\textrm {mod}\,p$ cohomology rings of the nonabelian split metacyclic $p$-groups, Arch. Math. (Basel) 44 (1985), no. 1, 29–38. MR 778989, DOI 10.1007/BF01193778
- Leonard Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224–239. MR 137742, DOI 10.1090/S0002-9947-1961-0137742-1
- Leonard Evens and Stewart Priddy, The cohomology of the semidihedral group, Conference on algebraic topology in honor of Peter Hilton (Saint John’s, Nfld., 1983) Contemp. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1985, pp. 61–72. MR 789794, DOI 10.1090/conm/037/789794
- Victor W. Guillemin and Shlomo Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16–47. MR 170295, DOI 10.1090/S0002-9904-1964-11019-3
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879, DOI 10.1007/978-3-642-62029-4
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- J. Peter May, Matric Massey products, J. Algebra 12 (1969), 533–568. MR 238929, DOI 10.1016/0021-8693(69)90027-1 McCleary, User’s guide to spectral sequences, Publish or Perish, Houston, TX, 1985.
- Minoru Nakaoka, Homology of the infinite symmetric group, Ann. of Math. (2) 73 (1961), 229–257. MR 131874, DOI 10.2307/1970333
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- Daniel Quillen, The $\textrm {mod}$ $2$ cohomology rings of extra-special $2$-groups and the spinor groups, Math. Ann. 194 (1971), 197–212. MR 290401, DOI 10.1007/BF01350050
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI 10.2307/1970825
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042 J.-P. Serre, Algèbre locale—multiplicités, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin and New York, 1965.
- Richard P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 475–511. MR 526968, DOI 10.1090/S0273-0979-1979-14597-X
- Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 485835, DOI 10.1016/0001-8708(78)90045-2
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 447-488
- MSC: Primary 20J06; Secondary 18G40
- DOI: https://doi.org/10.1090/S0002-9947-1994-1142778-X
- MathSciNet review: 1142778