## Transfer functions of regular linear systems. I. Characterizations of regularity

HTML articles powered by AMS MathViewer

- by George Weiss PDF
- Trans. Amer. Math. Soc.
**342**(1994), 827-854 Request permission

## Abstract:

We recall the main facts about the representation of regular linear systems, essentially that they can be described by equations of the form $\dot x(t) = Ax(t) + Bu(t)$, $y(t) = Cx(t) + Du(t)$, like finite dimensional systems, but now*A*,

*B*and

*C*are in general unbounded operators. Regular linear systems are a subclass of abstract linear systems. We define transfer functions of abstract linear systems via a generalization of a theorem of Fourés and Segal. We prove a formula for the transfer function of a regular linear system, which is similar to the formula in finite dimensions. The main result is a (simple to state but hard to prove) necessary and sufficient condition for an abstract linear system to be regular, in terms of its transfer function. Other conditions equivalent to regularity are also obtained. The main result is a consequence of a new Tauberian theorem, which is of independent interest.

## References

- Wolfgang Arendt and Jan Prüss,
*Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations*, SIAM J. Math. Anal.**23**(1992), no. 2, 412–448. MR**1147871**, DOI 10.1137/0523021 - C. J. K. Batty,
*Tauberian theorems for the Laplace-Stieltjes transform*, Trans. Amer. Math. Soc.**322**(1990), no. 2, 783–804. MR**1013326**, DOI 10.1090/S0002-9947-1990-1013326-6 - Ruth F. Curtain,
*Equivalence of input-output stability and exponential stability*, Systems Control Lett.**12**(1989), no. 3, 235–239. MR**993947**, DOI 10.1016/0167-6911(89)90055-8
—, - Ruth F. Curtain and George Weiss,
*Well posedness of triples of operators (in the sense of linear systems theory)*, Control and estimation of distributed parameter systems (Vorau, 1988) Internat. Ser. Numer. Math., vol. 91, Birkhäuser, Basel, 1989, pp. 41–59. MR**1033051** - J. Diestel and J. J. Uhl Jr.,
*Vector measures*, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR**0453964**, DOI 10.1090/surv/015 - Gustav Doetsch,
*Handbuch der Laplace-Transformation*, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften. Mathematische Reihe, Band 15, Birkhäuser Verlag, Basel-Stuttgart, 1972 (German). Band II: Anwendungen der Laplace-Transformation. 1. Abteilung; Verbesserter Nachdruck der ersten Auflage 1955. MR**0344808**, DOI 10.1007/978-3-0348-5956-1 - Y. Fourès and I. E. Segal,
*Causality and analyticity*, Trans. Amer. Math. Soc.**78**(1955), 385–405. MR**69401**, DOI 10.1090/S0002-9947-1955-0069401-5 - Paul A. Fuhrmann,
*Linear systems and operators in Hilbert space*, McGraw-Hill International Book Co., New York, 1981. MR**629828** - Günther Greiner, Jürgen Voigt, and Manfred Wolff,
*On the spectral bound of the generator of semigroups of positive operators*, J. Operator Theory**5**(1981), no. 2, 245–256. MR**617977** - J. William Helton,
*Systems with infinite-dimensional state space: the Hilbert space approach*, Proc. IEEE**64**(1976), no. 1, 145–160. Recent trends in system theory. MR**0416694**, DOI 10.1109/PROC.1976.10076 - Richard Rebarber,
*Conditions for the equivalence of internal and external stability for distributed parameter systems*, IEEE Trans. Automat. Control**38**(1993), no. 6, 994–998. MR**1227215**, DOI 10.1109/9.222318 - Dietmar Salamon,
*Infinite-dimensional linear systems with unbounded control and observation: a functional analytic approach*, Trans. Amer. Math. Soc.**300**(1987), no. 2, 383–431. MR**876460**, DOI 10.1090/S0002-9947-1987-0876460-7 - Dietmar Salamon,
*Realization theory in Hilbert space*, Math. Systems Theory**21**(1989), no. 3, 147–164. MR**977021**, DOI 10.1007/BF02088011 - George Weiss,
*Admissibility of unbounded control operators*, SIAM J. Control Optim.**27**(1989), no. 3, 527–545. MR**993285**, DOI 10.1137/0327028 - George Weiss,
*Admissible observation operators for linear semigroups*, Israel J. Math.**65**(1989), no. 1, 17–43. MR**994732**, DOI 10.1007/BF02788172 - George Weiss,
*The representation of regular linear systems on Hilbert spaces*, Control and estimation of distributed parameter systems (Vorau, 1988) Internat. Ser. Numer. Math., vol. 91, Birkhäuser, Basel, 1989, pp. 401–416. MR**1033074** - George Weiss,
*Representation of shift-invariant operators on $L^2$ by $H^\infty$ transfer functions: an elementary proof, a generalization to $L^p,$ and a counterexample for $L^\infty$*, Math. Control Signals Systems**4**(1991), no. 2, 193–203. MR**1092636**, DOI 10.1007/BF02551266
H. Zwart, Private communication, 1988.

*Representations of infinite-dimensional linear systems*, Three Decades of Mathematical Systems Theory (H. Nijmeijer and J. M. Schumacher, eds.), Springer-Verlag, Berlin, 1989, pp. 101-128. R. F. Curtain, H. Logemann, S. Townley, and H. Zwart,

*Well-posedness, stabilizability and admissibility for Pritchard-Salamon systems*, Institut für Dynamische Systeme, Universität Bremen, Report #260, 1992.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**342**(1994), 827-854 - MSC: Primary 93C25; Secondary 47N70, 93B28
- DOI: https://doi.org/10.1090/S0002-9947-1994-1179402-6
- MathSciNet review: 1179402