A controlled plus construction for crumpled laminations
HTML articles powered by AMS MathViewer
- by R. J. Daverman and F. C. Tinsley
- Trans. Amer. Math. Soc. 342 (1994), 807-826
- DOI: https://doi.org/10.1090/S0002-9947-1994-1182981-6
- PDF | Request permission
Abstract:
Given a closed n-manifold M $(n > 4)$ and a finitely generated perfect subgroup P of ${\pi _1}(M)$, we previously developed a controlled version of Quillen’s plus construction, namely a cobordism (W, M, N) with the inclusion $j:N \mapsto W$ a homotopy equivalence and kernel of ${i_\# }:{\pi _1}(M) \mapsto {\pi _1}(W)$ equalling the smallest normal subgroup of ${\pi _1}(M)$ containing P together with a closed map $p:W \mapsto [0,1]$ such that ${p^{ - 1}}(t)$ is a closed n-manifold for every $t \in [0,1]$ and, in particular, $M = {p^{ - 1}}(0)$ and $N = {p^{ - 1}}(1)$. We accomplished this by constructing an acyclic map of manifolds $f:M \mapsto N$ having the right fundamental groups, and W arose as the mapping cylinder of f with a collar attached along N. The main result here presents a condition under which the desired controlled plus construction can still be accomplished in many cases even when ${\pi _1}(M)$ contains no finitely generated perfect subgroups. By-products of these results include a new method for constructing wild embeddings of codimension one manifolds and a better understanding of perfect subgroups of finitely presented groups.References
- J. F. Adams, A new proof of a theorem of W. H. Cockcroft, J. London Math. Soc. 30 (1955), 482–488. MR 76335, DOI 10.1112/jlms/s1-30.4.482
- Steve Armentrout, Decompositions and absolute neighborhood retracts, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 1–5. MR 0394600
- R. H. Bing, Upper semicontinuous decompositions of $E^3$, Ann. of Math. (2) 65 (1957), 363–374. MR 92960, DOI 10.2307/1969968
- J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83–112. MR 541330, DOI 10.2307/1971245
- J. W. Cannon, The recognition problem: what is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978), no. 5, 832–866. MR 494113, DOI 10.1090/S0002-9904-1978-14527-3
- J. W. Cannon, J. L. Bryant, and R. C. Lacher, The structure of generalized manifolds having nonmanifold set of trivial dimension, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 261–300. MR 537735
- Robert J. Daverman, Every crumpled $n$-cube is a closed $n$-cell-complement, Michigan Math. J. 24 (1977), no. 2, 225–241. MR 488066
- Robert J. Daverman, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), no. 2, 277–298. MR 623564
- R. J. Daverman, Decompositions of manifolds into codimension one submanifolds, Compositio Math. 55 (1985), no. 2, 185–207. MR 795714
- Robert J. Daverman, Decompositions of manifolds, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR 872468
- R. J. Daverman and F. C. Tinsley, Laminated decompositions involving a given submanifold, Topology Appl. 20 (1985), no. 2, 107–119. MR 800841, DOI 10.1016/0166-8641(85)90071-9
- R. J. Daverman and F. C. Tinsley, Laminations, finitely generated perfect groups, and acyclic maps, Michigan Math. J. 33 (1986), no. 3, 343–351. MR 856526, DOI 10.1307/mmj/1029003414
- R. J. Daverman and F. C. Tinsley, The homotopy type of certain laminated manifolds, Proc. Amer. Math. Soc. 96 (1986), no. 4, 703–708. MR 826506, DOI 10.1090/S0002-9939-1986-0826506-1
- R. J. Daverman and J. J. Walsh, Decompositions into codimension two spheres and approximate fibrations, Topology Appl. 19 (1985), no. 2, 103–121. MR 789592, DOI 10.1016/0166-8641(85)90064-1
- R. J. Daverman and J. J. Walsh, Decompositions into codimension-two manifolds, Trans. Amer. Math. Soc. 288 (1985), no. 1, 273–291. MR 773061, DOI 10.1090/S0002-9947-1985-0773061-4
- R. J. Daverman and J. J. Walsh, Decompositions into submanifolds that yield generalized manifolds, Topology Appl. 26 (1987), no. 2, 143–162. MR 896870, DOI 10.1016/0166-8641(87)90065-4
- A. Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften, Band 200, Springer-Verlag, New York-Berlin, 1972 (German). MR 0415602
- A. N. Dranishnikov, On a problem of P. S. Aleksandrov, Mat. Sb. (N.S.) 135(177) (1988), no. 4, 551–557, 560 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 2, 539–545. MR 942139, DOI 10.1070/SM1989v063n02ABEH003290
- Robert D. Edwards, Demension theory. I, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 195–211. MR 0394678
- Robert D. Edwards, The topology of manifolds and cell-like maps, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 111–127. MR 562601
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- James Howie, Aspherical and acyclic $2$-complexes, J. London Math. Soc. (2) 20 (1979), no. 3, 549–558. MR 561147, DOI 10.1112/jlms/s2-20.3.549
- Vo Thanh Liem, Manifolds accepting codimension-one sphere-shape decompositions, Topology Appl. 21 (1985), no. 1, 77–86. MR 808726, DOI 10.1016/0166-8641(85)90060-4
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. MR 1812024, DOI 10.1007/978-3-642-61896-3
- Daniel Quillen, Cohomology of groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 47–51. MR 0488054
- Frank Quinn, Ends of maps. I, Ann. of Math. (2) 110 (1979), no. 2, 275–331. MR 549490, DOI 10.2307/1971262
- Frank Quinn, Resolutions of homology manifolds, and the topological characterization of manifolds, Invent. Math. 72 (1983), no. 2, 267–284. MR 700771, DOI 10.1007/BF01389323
- Frank Quinn, An obstruction to the resolution of homology manifolds, Michigan Math. J. 34 (1987), no. 2, 285–291. MR 894878, DOI 10.1307/mmj/1029003559 L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than 5, Ph.D. thesis, Princeton Univ., 1965.
- Stephen Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), 604–610. MR 87106, DOI 10.1090/S0002-9939-1957-0087106-9 F. C. Tinsley, Acyclic maps which are homotopic to homeomorphisms, Abstract #838-57-31, Abstracts Amer. Math. Soc. 8 (1987), p. 426.
- C. T. C. Wall (ed.), Homological group theory, London Mathematical Society Lecture Note Series, vol. 36, Cambridge University Press, Cambridge-New York, 1979. MR 564417
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 807-826
- MSC: Primary 57N70; Secondary 54B15, 57M20, 57N35
- DOI: https://doi.org/10.1090/S0002-9947-1994-1182981-6
- MathSciNet review: 1182981