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APPROXIMATE SOLUTIONS TO FIRST AND SECOND ORDER

QUASILINEAR EVOLUTION EQUATIONS
VIA NONLINEAR VISCOSITY

JUAN R. ESTEBAN AND PIERANGELO MARCATI

Abstract. We shall consider a model problem for the fully nonlinear parabolic

equation

u, + F(x,t,u, Du, eD2u) = 0

and we study both the approximating degenerate second order problem and

the related first order equation, obtained by the limit as e —► 0 . The strong

convergence of the gradients is provided by semiconcavity unilateral bounds

and by the supremum bounds of the gradients. In this way we find solutions in

the class of viscosity solutions of Crandall and Lions.

1. Introduction

The theory of viscosity solutions to fully nonlinear equations has been widely

developed in the recent past, in connection with the study of several first and

second order nonlinear P.D.E.'s arising in many different branches of pure and

applied mathematics. Let us recall, for instance the deterministic and stochastic

control theory, the theory of Hamilton-Jacobi equations, the geometrical optics
analysis and more recently the motion of level sets by mean curvature and its

applications to the theory of image processing, cf. [ALM, ESl, ES2, CGG,

GGIS].
Within this framework very general results concerning the existence and the

uniqueness of the solutions can be obtained (see for instance the book [L] and

the survey [CIL]) and we intend to investigate the various intimate connections

between the methods of approximating nonsmooth solutions via very regular

solutions, in particular how to pass into the limit into highly nonlinear terms.

The analysis involves different degrees of difficulty, in particular the loss of

regularity of the limit (e.g., the kinks formation for the Hamilton-Jacobi equa-

tions) and the possible degeneracy of the higher order terms (e.g., the porous

medium equation). So we are going to investigate here a model problem which

will bring together all those levels of difficulties.
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The previous approximation problems can be set in some general form as

follows (we refer to [CIL] for the standard definitions of the theory of viscosity
solutions). Let us consider the fully nonlinear parabolic equation

(1.1) ut + F(x,t,u,Du,eD2u) = 0,

where e is a positive parameter and F is a continuous function (including the

case of degenerate elliptic F). The unknown u is u = u(x, t) for x £ RN

and t > 0, Du = (Dxu, ... , DNu) represents the spatial gradient of u, and

D2u corresponds to the matrix of second order derivatives of u with respect

to x.
Two important questions can be addressed, the former concerns the approxi-

mation of the eventually degenerate problem ( 1.1 ) by nondegenerate equations,

the latter the limit as e —> 0 in ( 1.1 ), to approximate the case of the completely

degenerate F = F(x, t, u, Du,0). In both of these two issues, it is important

to obtain relevant informations about the first and second order derivatives of

the solution.
A partial answer to these questions could be obtained by using the general

approach, via the uniqueness and the stability properties of viscosity solutions:

sup-inf convolutions and Perron's method (see for instance [CIL, BP]). Since
in general this approach does not provide estimates and convergence of the

derivatives, we are motivated to use a more traditional P.D.E. approach.

This paper wishes to be a first step in the general program outlined above. We

consider a specific nonlinear model problem which includes some basic features

though not all, of the general case.

Let H(X) be a convex function of X e RN . We will study how to approxi-

mate the following initial value problems: the first is the quasilinear degenerate

parabolic problem

ut + H(Du) = ediy(\Du\p-1Du)   in R* x (0, T),

u(x, 0) = uo(x)   in R^,

where p > 1 . The second is regarding the limit as e —» 0 in the previous

problem, namely the quasilinear first order problem

(ut + H(Du) = 0   inR"x(0,r),

[  ' \u(x,0) = u0(x)   in R^.

The problem (PE) can be considered as a "vanishing viscosity" approxima-

tion to problem (P). For instance, if the growth of H(X) is controlled by \X\p+i

for some p > 1, we balance this behaviour by introducing in (Pe) a nonlinear

viscosity second order operator, namely the //-Laplacian operator

(1.2) Ap(u) = div(\Du\p-lDu),

whose principal part is of the order of \Du\p~l .
The approximation of (P) by using the model problem (P£) has interest by

itself which goes beyond the general program described previously. Indeed, the

construction of finite difference schemes to solve (P) takes some advantages by

using a nonlinear "artificial viscosity" (see for instance the book [RM]), which

was proposed by von Neumann many years ago. Moreover, into some extent,

the results in this paper generalize those in [M] for the case TV = 1, where
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methods of compensated compactness are used and some numerical schemes

are proposed.
Another important fact about the model problem (P£) concerns the growth

rate of the first order term (i.e., the exponent p + 1 larger than 2 in the hamil-
tonian H) and the growth rate of order p - 1 in the diffusion coefficient of

Ap(u) = div(\Du\p~lDu). Actually two units of difference between both rates

of growth is the usual balance between the first and second terms, which ap-

pears in the regularity theory for quasilinear parabolic P.D.E.'s. We recall that

this balance is required to establish gradient bounds for the solutions. When

this condition is violated, some counterexamples can be found in [LSU]. So the

operator Ap(u) = ç\i\(\Du\p~lDu) seems to be a natural choice to generalize

the vanishing viscosity method for hamiltonians which grow like \Du\p+l. It

is also worth mentioning that in such a case similarity solutions of the form

m(|jc|/71/(p+1)) can be computed, and the ratio between x and t is the same

both for (P£) and (P).
In the case of H(X) = \X\p+l, problem (P£) is in strong connection with

the theory of nonnegative solutions to doubly nonlinear equations of the form

ut = Ap(um) as mp = 1, that are investigated in [EV3] and in the case N = 1

in [EV1].
In order to deal with the degeneracy in the gradient dependence of the prob-

lem (P£) we introduce, on the line of [EV2], a second approximation procedure

which leads us to study a problem of the form

(ut + Hs(Du) = ediv(<l)ô(\Du\)Du)   in R" x (0, T),

( e'â) I u(x,0) = u0(x)   inR",

where S > 0, and the hamiltonian Hs is a very simple approximation of H.

We construct explicitly the nonlinear function (¡>s = 4>s(r) f°r r > 0 > such that

<f)S(r) — rp~l forr>ô and (f>g(r) = 4>s(0) for r < ô/2. One then has an

operator

A>) = div(<M|DM|)Z)«),

which satisfies
Asp(u) = Ap(u)   for \Du\>ô,

as well as

Asp(u) = ^(O)A(w)   for \Du\ < ô/2.

The problem (P£;¿) is no longer degenerate and the regularity theory of quasi-

linear parabolic equations provides smooth solutions of (Pe>¿), cf. [LSU].

In §2 we establish the bound

A*{utti) = div(0,(|Z)Me>(,|)Z)«e>(,) < k/t,     in R" x (0, +oo),

where k = pN/X and X > 0 is related to the convexity properties of H(X).

So one has a semiconcavity estimate which is independent both of e and 6,

and moreover it follows

Ap(u) = di\(\Du\p-1Du) < k/t,

for the solutions of problem (P£) and of problem (P). Semiconcavity inequal-

ities involving the p-Laplacian operator have been first established in [EV2]
and our proof is based on some techniques of that paper. We wish to stress

the hyperbolic nature of this estimate, which comes from the convexity of the
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hamiltonian H and is, for this reason, obviously not true as H = 0. This

fact is strongly related to the Oleinik's entropy conditions for scalar conser-

vation laws with convex flux, when N = 1. Several estimates of this nature

have been obtained for the Laplace operator (namely the case p = 1 in (1.2))

in the framework of the Hamilton-Jacobi equations, for hamiltonians having a

quadratic growth. The semiconcavity bounds for the eikonal equation found

an interesting application in the theory of the porous media equation, by con-

sidering the gradient square term in the "pressure" equation (see for instance
[A]). Some other semiconcavity estimates have been obtained in [CLS], for a

more general class of hamiltonians.
Two types of gradient bounds are obtained in §3. The former is a universal

bound for the gradient which depends explicitly on the semiconcavity estimate

and the oscillation amplitude of the solution. It is established by the classical

Bernstein method [B, LSU, S], although the application given here cannot be

obtained as a consequence of these papers. Because of the term \Du\p~l in the
principal part of the //-Laplacian operator (1.2), the coefficients of the linearized
problem depend not only on u and Du but also on the second order derivatives

of u . The previously obtained semiconcavity bound is a crucial argument in

providing a control of these terms. This kind of difficulty does not appear when

dealing either with the usual vanishing viscosity or with other situations which

are linear in the second order term of the equation.

The latter is a more traditional gradient bound obtained from the behaviour

as \x\ —> co of the gradient at t = 0, via a maximum principle technique.

However, it is not essential in the study of the convergence that will be done

later.

Section 4 deals with the construction of some upper and lower barriers which

allow to control the oscillation amplitude of the solution. Although we do

not make this computation explicitly, they can be used to attack this problem
with Perron's method, as outlined in [CIL]. The barriers' construction has been

done by a suitable modification of the explicit formulas for the Hamilton-Jacobi

equations [L, BE].

We finally deal with the limits, first as S —> 0 then as e —► 0, in the framework

of viscosity solutions. We use the local bound on \Due ^ \ and the semiconcavity

Ap(ue>s) < k/t to show equiboundedness of Asp(uEj) in the space of measures.

By Minty's method, we can pass to the limit inside Asp . The two estimates above

also give some strong compactness of Asp(uet¿(-, t)) in Wi¿cl'5(RN), 1 < s <

+00 . The monotonicity and the coercivity of A^ provide the strong convergence

of the gradient. The limit solution is still a "viscosity solution" because of well-

known stability properties. The definition of viscosity solutions is well known,

we refer to [CIL, §8; CEL, IL] for details.
The uniqueness of the solutions to (P£) and (P) in the class of viscosity

solutions is provided by the theory developed by Ishii-Lions [IL], Crandall [C],

or by Theorem 8.2 in [CIL].

2. Semiconcavity

In this section we prove the semiconcavity estimate for the solution u =

uE(x, t) of the initial value problem (P£).   Let H(X) to be a smooth and
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convex function of X £ RN , such that its second order derivatives

Hij(X) = d2H(X)/dX¡dXj

satisfy

(2.1) X\X\p-l\Y\2 < Hij(X)YiYj < A\X\»-l\Y\2,

for some p > 1, some 0 < X < A and every X, Y £RN . We have

Theorem 1. Let H(X) satisfy (2.1). Then the unique viscosity solution u —

ue(x, t) of (P£) satisfies Ap(u) < k/t as a measure in RN x (0, oo). The

constant k is k =pN/X.

1. To present the basic arguments in the proof of Theorem 2, we first proceed

formally.

a. To begin with, we develop the term

Ap(u) = Di[\Du\p-lD¡u]

at the points (x, i) where Du(x, í) ^ 0. This leads to the expression

(2.2) Ap(u) = \Du\p-xEijDijU,

where we have defined

(2.3) Eij = Eij(Du) = (Sij - didj) + pdidj

and

di = D¡u/\Du\,    for i,j = 1,2, ... , N.

By using the coefficients Eij we can also write the identity

(2.4) Dj[\Du\p-xDiU] = \Du\p-lEikDjku,

for i=l,2, ... ,N and ; e {1, 2, ... , N; t}.

b. Let u satisfy

(2.5) u, + H(Du) = eAp(u)   in R* x (0, oo),

and consider the linear operator

(2.6) 5?(<p) = tpt- eDi[\Du\p-lEij(Du)Dj<p] + Hk(Du)Dkq>.

(Here and in the sequel, we use the notation Hk(X) = dH(X)/dXk .)

We will show that 9 = Ap(u) satisfies

(2.7) Sf(9) < -92/k.

Then, Theorem 2 will follow from the Maximum Principle: since for 9 = k/t

we have 5?(9) = -~9~2/k and 9(x, 0) = +oo > 9(x, 0), then

9 = Apu<9 = k/t.

c. Let us now compute 2C(9). Thanks to (2.4), we have

(2.8) 9t = Di[\Du\p-xEijDjUt].

Equation (2.5) for u gives

DjUt = eDj9-HkDjku,



506 J. R. ESTEBAN AND PIERANGELO MARCATI

which together with (2.8) yields

9t = £Di[\Du\p-{EijDj9] - Di[Hk\Du\p-lEijDjku]

= eDi[\Du\p-{EijDj9] - Di[HkDk[\Du\p-xD¡ü]].

Therefore, we obtain

&{ß) = HkDk[Di[\Du\p-xDiU]] - Di[HkDk[\Du\p-xDiU]]

(2.9) = -D¡[Hk]Dk[\Du\p-lDiU]

= -\Du\p~l Trace[(^D2u)(^D2u)],

where we have defined the matrices 37 = (Hij), f = (E¡j), and D2u = (D¡ju) .

d. Now we show (2.7) in the simple case H(X) = \X\p+l. We have

9 = Ap(u) = \Du\p~x TracedD2u)

and

£f(9) = -(p+ l)\Du\2(p-VTmce[(gD2u)2].

Therefore we obtain

&{ß) < -^-\Du\2{P-'\Trnct(^D2u)]2 = -^-&2-

e. The proof of (2.7) for general H(X) satisfying (2.1) is achieved by looking

at the canonical form of the matrix %.
Let us consider the quantities

¿V N

ß=]T(A7")2, B2=YJ{diDijU)2,
(2.10) iJmi iJ=1
V ' N N

T = Au = ^2 DjjU, A = ^2 didjDjjU.
1=1 ï,7=1

We have from (2.2) and (2.3) that

9 = Ap(u) = \Du\p-l[(T - A)+pA],

and from Cauchy-Schwarz inequality
"    1

As in Lemma 1 of [EV2], we also have

Lemma 2.1. (a) An orthogonal transformation W can be made such that

g = tfdmg{p, 1,..., \}WT.

Moreover, d = (d\, ... , dfi) is an eigenvector of W corresponding to the eigen-

value p.
(b) Let 9 = Ap(u). Then

92/N < \Du\2(p-{)[(Q + A2- 2B2)+p2A2].

-Î-02 < \Du\2^-^
N

2 *2[T-AY+plA
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To prove (2.7), we define ~W = (Hij) = WTßT %, í¿ = ([/,;) = &TD2uW,
and apply Lemma 2.1(a) to get that (2.9) reads

&(0) = -\Du\"-lHjk IpUxjUx, + ¿ UijuA .

At this point, we use the left inequality in our hypotheses (2.1 ) on H. It implies

&{fi) < -X\Du\2^ \pJ2(Uxj)2 + J2Yi(Uij)2\
[    j=x i=2j=\ J

< -X\Du\2{p~l){pB2 + [Q + A2- 2B2] + [B2 - A2]}.

Finally, thanks to A2 < B2 and Lemma 2.1 (b) we obtain

&(0) < --\Du\2^~l){[Q + A2- 2B2]+p2A2} < ~A^92-

2a. We remark that solutions of (2.5) do not possess the properties of regular-

ity and boundedness required to perform directly the computations above and

to use the Maximum Principle for (2.6). Actually, equation (2.5) fails to be uni-

formly parabolic at the points (x, t) where Du(x, t) = 0. As a consequence,

solutions of (P£) are in general, at most Cl+1/p-smooth around these points.

Thus, to prove Theorem 1 we are led to regularize suitably the p-Laplacian

operator Ap(u) = div[|Z)w|p_1Z)î/], and consider instead the problem

u, + Hs(Du) = ediy[M\Du\)Dü\   in R^ x (0, oo),

u(x, 0) = uo(x)   in R .

Here S > 0 and we construct a smooth fo = (f>s(r) such that 4>s(r) = rp~l for
r > S and </>s(r) = <A?(0) > 0 for r « 0. The precise definition and properties

of fa are presented next.

Lemma 2.2. There exists a nondecreasing and C°°[0, oo) function </»¿ = 4>s(r),
satisfying

(i)   (j)S(r) = rp-' for r>6,

(ii)   Mr) = fo(0) > 0 for 0<r<ô/2,
(iii)   rl~p(f)¿(r) is nondecreasing for 0 < r < ô.

Proof of Lemma 2.2. Consider a monotone and C°°[0,oo) function o¿(r) such

that os{r) =1 for 0 < r < 5/2 and a¿(r) = p for r > ô. We want og(r) to

represent "the exponent" of r<f>ä(r). To this aim, we define 4>¿(r) by

l+r<p's(r)/<f>s(r) = es(r).

This gives

Mr) = h(0)cxPy^as{s)s~lds\ ,

and the value of </>á(0) can be chosen to obtain (i). The other assertions of the

lemma are then easy to check.

Remark 2.3. With this definition of (f>6 , the operator

A^(M) = div[^(|Z)«|)Z)«])
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can be written as
Asp(u) = M\Du\)EfjDijU,

where

Efj = Efj(Du) = (ôij - d¡dj) + as(\Du\)didj.

In particular, we have

(2.11) Aôp(u) = Ap(u)   for \Du\>ô,

and

(2.12) A5p(u) = (¡>s(Q)Au   for \Du\ < a/2.

According to (2.12) and the properties of <f>s , we define Hg(X) by

(2.13) Hâ(X) = H(X) + (X/2)ôp-l\X\2,    for X £ RN.

b. Next we solve (P£ s) f°r smooth initial data. Theorems VI.4.1 and V.8.1 in

[LSU] give

Lemma 2.4. Fix e, S > 0 and let Hs be as in (2.13). Let u0(x) be C°°(RN)
and bounded, with bounded derivatives of all orders. Then, there exists a unique

u = uEj(x, t) solution of (P£)á), which is C°°(RN x (0, oo)) and bounded,

together with its derivatives of all orders. In particular

sup    \u(x, t)\ < Mo = sup|«o|,
R^xiO.oo) R'*

and

sup    \Du(x, t)\ < Mx,
RJVx^oo)

where Mx depends on e, ô, M0, and supRw \Duo\ ■

c. Now we can prove

Proposition 2.5. Let uq(x) and u = uej(x, t) be as in Lemma 2.4. Then

Asp(u) < k/t holds in RN x (0, oo).

Proof of Proposition 2.5. As explained above, we first consider the linear oper-

ator

(2.14) &s{<p) = <pt- EDi[M\Du\)Efj(Du)Dj<p] + Hk(Du)Dk(p,

then show that 9 = Asp(u) satisfies

(2.15) Sfs(9)<-92/k,

and finally, we apply the Maximum Principle (e.g., as stated in [IKO, Theorem

8]).
Let us obtain (2.15). Set f¿¡ = (Eôi}), and Q, B2, T, and A as in (2.10).

We have

9 = Asp(u) = 0,5(|Z)M|)Trace(g¿D2í<)

= fo(\Du\)[(T-A) + os(\Du\)A],

and

(2.16) 92/N < M\Du\)2[(Q + A2- 2B2) + os(\Du\)2A2],
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as in Lemma 2.1. On the other hand (set %& = (Ul¡)),

_2J(0) = -(¡)S(\Du\)TrdiCe[(ß?sD2u)(%sD2u)]

<-X(\Du\p~l + ôp-l)(p&(\Du\){as(\Du\)B2+ [Q+A2- 2B2] + [B2-A2]}.

Since <j>s(\Du\) < \Du\p~l +Sp-1 and 1 < as < p , we obtain

-W) < ~M\Du\)2{[Q + A2- 2B2] + as(\Du\)2A2} <-^B2,

where we have used A2 < B2 and (2.16).

To complete the proof of Theorem 2 we have yet to let ô tend to 0 in

Proposition 2.5. This will be done in §5, where we will study the limits as

ô —> 0 and as e —► 0 of the solutions and the various terms in (P£;($) and

(P£), respectively.

Remark 2.6. Actually we can consider an alternative nonlinear vanishing viscos-

ity related to the convex hamiltonian H, namely by replacing the p-Laplacian

with the nonlinear operator di\DH(Du). In this case, we can avoid the use

of Lemma 2.1 and by following the same procedure used in [L] for the usual

vanishing viscosity (see also Id), we obtain a new semiconcavity inequality of

the form

div DH(Du) < N/t.

3. Gradient estimates

In this section, we obtain two different local estimates for the gradient of the

solutions uE and u of problems (P£) and (P).

For fixed R > 0 and 0 < x < T we set QR,r = BR(0) x(x,T]. In the first
estimate, we establish a bound of \Du£\ over QR<T in terms of the oscillation

of ue over a larger region, say Q2R,T/2 . To be more precise, we consider a

cut-off function Ç 6 C°°(ßÄ,T), 0 < Ç(x, t) < 1, and such that Ç(jt, t) = 0
on the parabolic boundary of Qr , T. We also define

(oRtT = sup/(i, u)- iaff(t, u),
QKr Qr.,

where the function /(/, u) is given by

(3.1) f(t,u) = u + ek(p- l)log(r/T),

where p > 1 (and k = pN/X is the constant in Theorem 1).

Theorem 2. Let u = u£(x, t) be the solution of (P£). For (x, t) £ QR,T, we

have

C(x, t)\Du(x, 01 < C{(e + \\DC\Uo)R,r + [(HCtlU + elM^^r]1^},

where the constant C depends on p, N, X, and A.

Remark. Theorem 3 will be proved by using the classical Bernstein method. As

explained in the Introduction, the semiconcavity estimate in Theorem 2 and the
definition of f(t, u) in (3.1) will play a key role in obtaining estimates from
the linear operator Sfs in (2.14) (see Lemma 3.3 and inequality (3.17) below).

By letting e —> 0 in Theorem 3, we obtain



510 J. R. ESTEBAN AND PIERANGELO MARCATI

Corollary 1. Let u = u(x, t)  be the unique viscosity solution of (P), and let

Ç(x, t) be as above. We have

C(x, t)\Du(x, 01 < CÍIIDCHooWa.tÍ«) + [Kt\\oo(oRAu)Yl[p+l)},

where o)RtX(u) stands for the oscillation of u over QR,T.

The second type of gradient estimate that we prove in this section is a bound

of \Due\ in a strip R^ x [0, T), for some 0 < T < +oo, in terms of the

behaviour of \Duo(x)\ as |x| -> oo. We have

Theorem 3. Let u = uE(x, t) be the solution of (P£) with initial data uo(x)

such that
K0 = sup (1 + \x\)-l/p\Du0(x)\ < +00.

X€B.N

Then, there exists 0 < TE < +oo such that

(l + \x\)-l'p\Du(x,t)\ < C[(eE^T°-l) - l)/e]~l'p,

holds a.e.  in RN x [0, TE).  The constant C depends on p and A, while ß

depends only on p .

Remark. The finite blow-up time TE of the estimate above is given by

(3.2) ri = _Liog(i + ̂ \.
eß      \       A + el

The corresponding estimate for the solution of problem (P) is obtained by

letting e —> 0 in Theorem 3. We have

Corollary 2. Let u = u(x, t) be the unique solution of (P) and let Uo(x) be as
in Theorem 3. Then

\Du(x,t)\p<C(l + \x\)/(T-t)

holds a.e. in RN x[0,T).  T is given by T = CPyAK~p .

Let us prove now Theorem 2.

Proof of Theorem 2. As in the proof of Theorem 1, we first deal with u =

uE,s(x, 0 as in Lemma 2.4 and then pass to the limit as ô -» 0.
We estimate the quantity

(3.3) S = SR_? = maxÇp+l\Du\p+[,
Qr,,

with the aid of the function

(3.4) Z(x,t) = Cp+l\Du\p+l-nf(t,u),

where the constant ß is defined by

(3.5) n = (c + S)/2(c + coR,r)       (0<c<1).

Let (x0, t0) £ Qr,x be such that

Z(x0, to) = raaxZ(x, t).
QR.r

Now we distinguish several cases.
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If either |xo| = R or t0 = x then Ç(xn , íq) = 0 and

Z(x, t) < Z(x0, t0) = -pf(to, u(x0, to))   for (x, t) £ QR,r,

which implies

S<œR,x(c + S)/2(c + œRiX),

and therefore

(3.6) S < c.

If on the contrary |x0| < R and x < t0 <T, then we have two possibilities.

If \Du(x0,t0)\ <S, then

Z(x, 0 < Z(xo, t0) < ôp+l - nf(h, u(x0, io))

and (3.5) imply

(3.7) S<2Sp+l+c.

In the remaining case \Du(xo, io)| > ô , we argue as follows.

We consider the linear operator J2¿ in (2.14), which in the range \Du\ > S

reads

3s(<P) = <Pt~ eDi[\Du\p-'Eij(Du)Dj(p] + Hk(Du)Dk<p,

thanks to our construction of 4>s m Lemma 2.2(i). By writing 5?s(<P) m non"

divergence form, we obtain

(3.8) 5fs(<p) = 9t- e\Du\p-'Eij(Du)Dij(p + [Hk(Du) - eBk(Du)]Dktp,

for \Du\ > ô , where the coefficients Bk(Du) are given by

Bk=Di[\Du\»-lEik{Du)]

= 2(p - l)\Du\p-3[DiUDiku - ADku] + (p - l)£¡¿Ap(u),

and A was defined in (2.10).
We will prove

Proposition 3.2. At the points (x, t) £ QR^ where \Du(x, 01 > <5. we have

-^(Z) ^ - p-T\^Du\P+[ - CeCp+lAp(u)2

+ C[||C, |U + eWDZWlp-^Dur1 + \\DC\\ooCp\Dun\Du\^1,

where C = C(p,N,X, A) > 0.

We postpone the proof of Proposition 3.2 and continue with the estimate of

S in the case \Du(xo, in)I > <5 •
Since (xo, io) 6 Qr,% is a point of maximum of Z(x,t), we have 0 <

¿¿¡(Z)(xo, io) • This inequality, Proposition 3.2 and the fact that Du(x0, io) ^

0 imply

ß < QIICHoo + eWDCWlC'-^Dur1 + \\DC\W\Du\p].

From our definition of n in (3.5) and Holder's inequality, we obtain

—^—5 < QIIGIIoc + ell/« + (e + ||ÖCIU)5^+1'],
e + <öÄ,t
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hence

$p/(p+ -SVtiH-i) _ c(e + p>í||c KCdlCtWoo + eWDCW^)
[C + 0)r!T

For a > 0 to be chosen, we now face two different possibilities: Either

Si/<p+D/(c + ofc,T) - C(« + ||Z)f IU) < a,

in which case

(3.9) S < [(c + tuji,T)(a + C(e + ||Z>Ç||oo))F+1,

or

Sl'W/{c + toÄit) - C(e + ||Z)C||oo) > a,

which gives

(3.10) 5 < [(C/a)(||G||oo + eWDQgnWP.

From (3.9), (3.10), and the definition of S in (3.3), we obtain

C(x, t)\Du(x, i)| < (c+coR,x)(a+C(e+\\DC\U)H(C/a)(\\Ct\\x+e\\DQ\2¿)]l'p,

for all (x, t) £ Qr,x - Now we minimize with respect to a the right side of

this expression. The result is

C(x, t)\Du(x, 0| < C{(e + ||Z)Clloo)(c + £»*,»)

+ [(IICi||oo + e||öC||2i)(c + u;Ä,T)]1/(p+1)},

for (x, i) G Öä t ■ Finally, Theorem 2 follows by letting c and ¿ tend to 0
in (3.6), (3.7), and (3.11).

To prove Proposition 3.2, we first compute =S¿(Z).

Lemma 3.3.  We have

&S(Z) = - n[HJs(Du)DjU - Hs(Du)] + ß[e(p - l)Ap(u) - ft]

- e(p + \W+xDi[\Du\p-lDjU]Dj[\Du\p-xDiU]

- 2e(p + l)Dj(i;p+l)\Du\p-lDiuDi[\Du\p-lDjU]

+ ^s(Cp+l)\Du\p+l

at the points (x, t) £ QR^ where \Du(x, t)\ > ô.

Proof of Lemma 3.3. From the definition of Z(x, t) in (3.4) we have

(3 13) Z< = (P+ l)Cp+l\Du\p-lDjU[eDjAp(u) - HkDjku]

+ (Cp+l)t\Du\p+l - ß[f, + eAp(u) - Hs].

On the other hand, we get from (2.4) that

DjuDjAp(u) = DjuDi[\Du\p-x EikDjku]

- DjU\Du\p~lEikDijku + DjUDjkuBk.

By introducing the quantities defined in (2.10), this can be written as

DjuDjAp(u) = DjU\Du\p-[ElkDijku + 2(p - \)\Du\p~{[B2 - A2]

+ (//- \)AAp(u).
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Now we substitute this identity in (3.13) and obtain

Zt = six + 2el2 + eh - /i[ft + sAp(u) - Hs]

- Çp+lH%(Du)Dk[\Du\p+l] + (Cp+1)t\Du\p+l,
(3.14)

where

(3.15)

h = (P + l)Cp+l\Du\2^-^DjUEik(Du)Dijku,

h = (P+ 1)(P - \W+x\Du\2(p-x\B2 - A2],

I2 = (p + l)(p-l)Cp+l\Du\p-lAAp(u).

Let us compute D¡Z and D¡jZ . We have

DjZ = (p+ \)Cp+l\Du\p-iDkuDjku + Dj(Cp+l)\Du\p+l -ßDjU,

and

DijZ = (p+l)Cp+l\Du\p-lDkuDljku

+ (p + \)i;p+lDjkuDi[\Du\p-xDku]

+ 2(p + l)Dj(Çp+l)\Du\p-lDkuDiku + \Du\p+lDij(Cp+l) - (iDuu.

The terms \Du\p-lEij(Du)DuZ and [Hk(Du) - eBk(Du)]Zk in £?S(Z) are
respectively

\Du\p-{EijDijZ = Ix -ßAp(u)

+ (p + l)Cp+xDi[\Du\p-lDjU]Dj[\Du\p~lDiU]

+ 2(p + l)Di(Cp+l)\Du\p-iDjUDj[\Du\p-1Diu]

+ \Du\p+l\Du\p-lEij(Du)Dij(Cp+i),

and

[Hk(Du) - eBk(Du)]Zk = Çp+lHk(Du)Dk[\Du\p+l] - ßü£(Du)Dku

(3.16) + \Du\p+i[Hk - eBk]Dk(Cp+l)

- 2el2 - e/3 + eß(p - l)Ap(u).

Putting together the expressions (3.14)—(3.16) yields (3.12).

Proof of Proposition 3.2. We estimate the different terms in (3.12).

(a) We use the hypotheses (2.1) on H to obtain

-ß[HJs(Du)DjU - Hô(Du)] < -Xß\Du\p+l/(p + 1).

(b) Thanks to Theorem 1 and our definition of f(t, u) in (3.1) we have

(3.17) e(p-l)Ap(u)-ft<0.

(c) As to the last term in (3.12), we have

^fô(i:p+i)\Du\p+i<c{\\i:t\\oo+4Di:\\2ooi:p-l\Du\p-1

(3.18) + \\DC\W\Du\p}\Du\p+l

-e(p+ l)Cp Bk(Du)DkQDu\p+l,

where we have used the right inequality in (2.1), and we have assumed that C

satisfies ||a>2CHoo < C||Z)Ç||L .
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(d) Finally, the term

- e(p + l)Cp+iDi[\Du\p-lDjU]Dj[\Du\p-lDiU]

= -e(p+ l)Cp+1|ow|2°'-1)Trace[(rZ)2M)2],

controls the fourth term in (3.12) and the last one in (3.18). Actually, the sum

of all of these three terms can be estimated as

< -s((p + l)/2N)Cp+lAp(u)2 + eC(p, A^)||Z>Clt^Cp-1 |^"lp_11^»"^1.

by using Cauchy-Schwarz inequality and Lemma 2.1(b).

The proof of Theorem 2 being completed, we next prove Theorem 3.

Proof of Theorem 3. We first proceed formally. Later on, we will indicate how

the formal arguments can be made rigourous.
We consider the functions y/(x) = (1 + \x\2)~{-p+x^2p and

Z(x, i) = y/(x)\Du(x, t)\p+l.

Theorem 3 will follow from the Maximum Principle, when applied to Z(x, i)

and the linear operator

&'{<p) = J2f(<p) + 2ey/(x)-x\Du\p-lEij(Dü)Djy/(x)Di(p,

where Sf(<p) is as in (3.8), i.e.,

£?((p) = (pt- e\Du\p-lEu(Du)Dij<p + [H^(Du) - eBk(Du)]Dk<p.

From Lemma 3.3, we have

5f(\Du\p+x) = -e(p+ l)\Du\2{p-l) Trace[(& D2u)2].

Straightforward computations lead to

2"(Z) = y/(x)5?(\Du\p+l)

(3.19) + y/(x)-x[Hk(Du) - eBk(Du)]Dky/(x)Z

+ ey/(x)-2\Du\p-lEu(Du)[2Diy/(x)Djy/(x) - y/(x)D¡ji//(x)]Z.

We estimate ^f'(Z) as follows. We use \DH(X)\ < A\X\P for X £ RN, to
get

(3.20) y/(x)-xHk(Du)Dky/(x)Z < Ay/(x)~a\Dy/(x)\Za,

where a = (2p + l)/(p + 1). The last term in (3.19) is estimated as

(3.21) < eC\i/(x)-y(\Dy/(x)\2 + y/(x)\D2y/(x)\)Z^ ,

where ß = 2p/(p + 1) < a and y = (3p + \)/(p + 1).
On the other hand, this last quantity is also an upper bound for the terms

y/(x)^(\Du\p+x) - ey/(x)~xBk(Du)Dky/(x)Z

in (3.19) (again, we use Cauchy-Schwarz and Lemma 2.1(b)).

The coefficients of Za and Zß in (3.20) and (3.21) being uniformly bounded
for x £ RN , we are led to the inequalities

3"(Z) < Cp[AZa + eZ?] < CP[(A + e)Za + eZ],

for some Cp > 0 depending on p .



QUASILINEAR EVOLUTION EQUATIONS 515

Finally, since

<p(t) = {(A + e)[(ee*(7W> - l)/e]}-{p+xVp,

(with ß = pCp/(p + 1) and TE as in (3.2)) satisfies <p' — CP[(A + e)tpa + etp]

and tp(0) - K^+x > Z(x, 0), the Maximum Principle implies Z(x, t) < (p(t)

in R"x[0, Te).

The arguments above can be put into rigourous form as follows. Consider

the function

Zs(x,t) = y/(x)<f>s(\Du\),

where u = uEj(x, t) is as in Lemma 2.4, and Q>s = ®s(r) is defined by

<&'g(r) - r<f>ô(r) for r > 0 and Os(0) - 0. In particular, this gives

r&¡(r)/Vs(r) = 1 + r<p>ö(r)/<t>s(r) = oô(r)

(notations as in Lemma 2.2), and

&s(Zs) = -e<f>s(\Du\)2Tmœ[(gâD2u)2],

where .2¿ comes from (2.14). The Maximum Principle is then applied to Z¿
and the linear operator

3¡'((p) = &s(<P) + 2ew(x)- xh(\Du\)Efj(Du)DjW(x)Di9.

The details are left to the reader.

4. Local estimates of the solutions

In this section, we construct some upper and lower local estimates for the

solution uE of problem (P£). Some of our considerations have been motivated

by the explicit formulas in [L, BE] and by some ideas in [LSV].

Our first result is a consequence of the semiconcavity estimate in Theorem
1.

Proposition 4.1. Let uE(x, i) be the solution of (P£). Then

\X-y\M/p t
(4.1) uE(x, t)<uE(y, TO + Cp,/ ' +erclog-,

holds for every x, y £ RN and t > x > 0, where k is the constant in Theorem
1.

Before going into the proof of this proposition, we show another upper esti-

mate of the solution, which holds down to i = 0.

Lemma 4.2. Let uo(x) be a continuous function, and such that

(4.2) Uo(x)<A + B\x-xo\x+xlP,        x £RN,

for some Xo G R^, A £R, and B > 0. Then, the solution uE(x, i) of (P£)
with initial data uq(x) satisfies

uE(x ,t)<A + B\x- xo|l+1/p(l + i/To)"'^ + eA:log(l + t/x0)

for all x £RN and i > 0. The positive constant xo depends on B, p, and X.

Proof of Lemma 4.2. We recall the hypothesis (2.1) on H(X), which gives

H(X)>X\X\p+x/p(p + \)   forXGR*,
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and consider the operator

0x(<p) = <pt + X\D<p\p+l/p(p + l)-eAp(<p),

together with

&(<p) = <pt + H{D<p)-eAp(<p).

Let us compare uE(x, t) to (we set xn = 0 for simplicity),

U(x,t) = A + B\x\x+X'p(l + i/T0)-1/p + ek log(l + t/x0).

We have 0 = S(uE) > Sx(uE), as well as @(XJ) > Sk(U). On the other hand,

@x(U) can be made &i(U) = 0 by choosing t0 = (Cpj/B)p, where CPtx —

(p/(p + l))(p/X)l/p . Since by (4.2) U(x, 0) > u0(x), the Maximum Principle

yields ue(x, t) < U(x, i).

Proof of Proposition 4.1. The solution uE satisfies Ap(uE) < k/t, hence

uEj + H(DuE)-ek/t<0.

Now, if v(x, t) is the solution of the first order initial value problem: v, +

H(Dv) = 0 in R^ x [t , +oo), v(x, x) — uE(x, t) in R^, we conclude that

Ue(x, t) <v(x, t) + eklog(i/r)   in R^x [t, +oo).

On the other hand, the Lax-Oleinik formula gives

v(x,t)=jglue(y,x) + (t-x)H*(j^\\,

where H*(X) = supyeRN{XY-H(Y)} is the polar function of H(X). Finally,

the hypothesis (2.1) on H implies H*(X) < CPtX\X\l+i'p for all X £RN , with
Cpx as in Lemma 4.2. Then (4.1) follows.

Remark. If the solution ue(x, t) exists in a strip R^ x [0, T), 0 < T < +oo,

we have from Proposition 4.1 that

Cp,x < liminf Í%Íl < limsup *&£ < %¿,
-   IxHoc   IxI' + '/i'   -    w.^ \x\^lp   -   Ûlp(T-tyip    ixi^oc i^i-.v,    w

for 0 < i < T, and

^< liminf Uo{X
TVP -  |x|-.oo  |x|1 + 1/p'

The case T = +oo corresponds to

0< liminf JfoW.
-   IxHoo   IxI' + '/P

This condition is satisfied in the class of initial data that we consider in our

next estimate.

Proposition 4.3. Assume that uo(x) is continuous and satisfies

(4.3) Mo(x)>-(a + ¿>|x|r)   forallx£RN,

for some exponent

0<r< 1 + 1//J,
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and some a,b > 0.   Let uE(x, t) be the solution of (P£)  with initial data

uo(x). For any T > 0, we have

ue(x ,t)>-K- CPtk\x\wxlp/(T - t)x/p + eA:'log(l - t/T),

for all x, y £ RN and 0 < i < T. The constant K depends on a, b, p and r,

while k' =pN/A.

Proof of Proposition 4.3. This time we obtain from (2.1) that

H(X) < A\X\p+x/p(p + 1 )   for X £ RN.

As in Lemma 4.2 we consider the operators S and (S^ , which now reads

SK((p) = <pt + A\D<p\p+x/p(p + 1) - eAp(<p).

We have &\{uE) > €(uE) = 0 in R^ x (0, +oo).  A subsolution for SK is

constructed as follows.

Given T > 0, we choose c > 0 such that

Tc = Cp,AC~P' CP,A = iP/iP + 1))(P/A)1/P,

satisfies Tc> T.
We use this c and Holder's inequality to obtain from (4.3) that

(4.4) m0(x) > -(a + b\x\r) > -[(a + bc) + c|x|1+1/p],

where bc = (bp+lc-pr)x'«p+x'>-prî.

For x G RN and 0 < t < Tc, we now define

V(x, i) = -(a + bc) - C(i)|x|1+1/" + ef(t),

with

C(t) = Cp,A(Tc-t)-x'p,

f(t) = k'\og(\-t/Tc),        k'=pN/A.

Thanks to (4.4), we have V(x, 0) < uo(x) for x G R^ . On the other hand,
V(x, t) also satisfies

*a(V) = e[f'(t) + N((p + \)/p)pC(t)p]

+ [(A/p2)((p + l)/p)pC(t)p+x - C'(i)]|x|1+1^

= 0,

thanks to the construction of C(t) and f(t). The assertion of the lemma then

follows from the Maximum Principle.

5. Convergence of the approximate problems

In this section, we study the limits as S —> 0 and as e —> 0 in problems

(P£>(5) and (P£), respectively. We establish some compactness properties of

the nonlinear viscosity terms in both of the two problems. In the limits, we

obtain the viscosity solutions of (P£) and (P).
We first keep e > 0 fixed and let ô -> 0 in problem (P£,á). Let us denote

by u¿ = uEys(x, t) the solution of this problem. We have
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Theorem 4. Let e > 0 be fixed. As ô -> 0, the solutions u¿(x, t) converge

to a continuous function u = u(x, i), uniformly on compact subsets of RN x
(0, +oo). Moreover,

(a) For i= 1,2,..., N,

DiUS(x, t) —> Duí(x , i)   a.e. in RN x (0, +oo), and in

L[0C(RN x (0, +oo))   for every p + 1 < r < +oo.

(b) For fixed i > 0, Aôpus(-, t) converges to Apu(-, t) in the strong topology of

wiœ 's(rN) > f°r ever7 1 < í < +00. By this we mean that for any Ç G C^R*),

(5.2) C(-)AspUs(-,t)^C(-)ApU(-,t)   inW~x's(RN).

Proof of Theorem 4. We divide the proof in several steps. In the first one, the

semiconcavity estimate is used to show the convergence in (5.2).

Step 1. According to the results in [Mu], bounded sets of measures in R^

which are also bounded in W~l'r(RN), are relatively compact in W^x'S(RN),

for every 1 < s < r < +oo.

Our estimates in §§3 and 4 imply that {|OWá|}á>o is uniformly bounded

in any compact subset of R^ x (0, +oo). Therefore, for fixed i > 0 and

C G C§°(RN), the set {Ç(-)Aôpuô(-, i)}<5>o is uniformly bounded in W~x'r(RN),
for every 1 < r < +oo .

On the other hand, the semiconcavity Ajus(', t) < k/t implies that

{Aspus(', t)}s>o is a bounded set of measures in R^, by using standard ar-

guments (cf., e.g., [Mu, Remarque 3]). Hence {Ç(-)Apug(', t)}¿>o is also a

bounded set of (compactly supported) measures.

Then, by Theorem 8 in [Mu], a subsequence of {Ç(-)Aâpua(-, i)}<s>o (that

we will label also with the subscript S) converges to some measure ßt in
W~l>s(RN).

As to the function u¿ and its gradient Du¿ , we have that as S —► 0 (again a

subsequence), u¿ -^ u in the weak- * topology of L^.(RN x (0, +oo)), though

for fixed i > 0, u¿(', t) -> u(-, t) uniformly on compact subsets of R^. The

convergence of Du¿ —' Du and of <ps(\Dug\)Dug to some V = V(x, t) also

take place in the weak-* topology of L^C(RN x (0, +oo)). Actually, one has

ßt — £(•) div V(-, t). Next we show that

V(.,t) = \Du(-,t)\p-xDu(-,t).

To this aim, we use Minty's method and the strong convergence of the nonlinear

viscosity term as follows.

By the monotonicity of the map X £RN ^> <p¿(\X\)X we have that for every

<p£W^'(RN)   (1/5 + 1/5'= 1),

0 < j Ç(x)2[M\Duô\)Duô - <t>s(\D(p\)D(p][Duô(x, t) - Dtp(x)]dx

= -(C(-)Aôpus(-, i) - C(-)A>(-), C(')(M-, O - *>(•))>

- 2 j C(x){us{x, i) - <p(x))[4>s(\Dug\)Dug(x, i)

-4>ö(\D<p\)D<p(x)]Dr,(x)dx,

where (•,•) denotes the duality pairing between ^"'^(R^) and ^'^'(R^).
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As S -* 0, the first term above converges to

-<£(•) div V(., o - C(-)Mp(0) . «•)(«(•. 0 - 9»))) »

by the strong convergence of Ç(-)AâpUs(-, t) in W~l >s, the uniform convergence

of <j>s(\X\)X to \X\p-lX for JeR^, and the weak convergence of Dus(-, t)

in W^¿s (RN). By similar reasons, the second term tends to

-2JC(x)(u(x, t) - <p(x))[V(x, t) - \D<p(x)\"-xD(p(x)]Di:(x)dx.

Therefore, we have obtained

0 < - (£(•) div V(., i) - t(-)Ap<p(-), £(•)(«(•, i) - ?(•))>

- 2 J C(x)(u(x, t) - (p(x))[V(x, i) - \D<p(x)\p-xD<p(x)]DÇ(x) dx

=   f Ç(x)2[V(x, i) - \D<p(x)\p-xDtp(x)][Du(x, i) - D<p(x)] dx,

which implies V = \Du\p~xDu by standard arguments.

Step 2. Now we show the convergence in (5.1). Our construction of 4>g in

Lemma 2.2 preserves the coercivity properties of the map X £RN ^> \X\P~XX.

Actually, it can be easily checked that

CP\X - Y\p+X < [<j>s(\X\)X - M\Y\)Y][X - Y]

holds for all X, Y £RN and some positive constant Cp . We use this coercivity
to get, for any fixed t > 0,

Cp f Ç(x)2\Dus(x, i) - Du(x, 0r+1 dx

< -(C(-)Apus(-, i) - C(-)ASpU(-, i), C(-)(M-, t) - u(., t)))

-2 j C(x)(us(x, t) - u(x, t))[M\Dus\)Dus(x, i)

- <f>s(\Du\)Du(x, t)]DÇ(x)dx.

As S —► 0, we obtain

[ C(x)2\Dus(x, t) - Du(x, t)\p+x dx -+ 0.

Fix now any 0 < x < T < +oo. Since {C|-D«,5|}<s>o is uniformly bounded in

R^ x [t , T], Lebesgue's dominated convergence theorem yields

lim /   /   Ç(x)2\Dus(x, i) - Du(x, t)\p+x dx dt = 0.

Step 3. In this step we prove the convergence us -> u uniformly on compact

subsets of R^ x (0, +oo). We already have that for any i > 0,

us(' > i) -* "(• > i)   uniformly on compacts subsets of R^.

Let us fix 0 < t < T, r' > N and any open and bounded flcR", with

supp Ç c Q.
Then Wx'r' (Q) is compactly embedded in W0(il) (the Banach space of func-

tions which are continuous on Q and vanish on d£l). By duality 8q(í2)' also
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embeds compactly in W ' r(Q). A well-known interpolation inequality yields

(with the usual L2(Q) identifications)

max|C(x)(w(5(x,ii)-Má(x, í2))| < r¡ sup \\í(-)us(-, t)\\   ,y a
(5.3) *en x<t<T °   (U>

+ CJÇ(-)(us(-, tx) - us(-, hMw-i.rw

for x < tx < t2 < T and rj > 0 to be fixed small enough.

The bounds in §§3 and 4 give that the coefficient of r\ above is uniformly

bounded. This fact and the equation

uSj + Hs(Dus) = eAâpuô   in ^''(R* x (0, +oo)),

imply

\\t(-)(us(-,ti)-u3(>,t2))\\w-i.r{a)

<|íi-í2| sup \\eAôus(-,t)-Hs(Duâ(-,t))\\fV-l.riç1),
T<t<T

hence
max|C(x)(w<î(x, tx) - us(x, /2))| = o(l)

as |ii -t2\-*0.

Then it follows the convergence u¿ —* u uniformly on fl x [t , T].
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