## Witt equivalence of global fields. II. Relative quadratic extensions

HTML articles powered by AMS MathViewer

- by Kazimierz Szymiczek PDF
- Trans. Amer. Math. Soc.
**343**(1994), 277-303 Request permission

## Abstract:

This paper explores the consequences of the Hasse Principle for Witt equivalence of global fields in the case of relative quadratic extensions. We are primarily interested in generating the Witt equivalence classes of quadratic extensions of a given number field, and we study the structure of the class, the number of classes, and the structure of the set of classes. Along the way, we reprove several results obtained earlier in the absolute case of the rational ground field, giving unified and short proofs based on the Hasse Principle.## References

- Jenna P. Carpenter,
*Finiteness theorems for forms over global fields*, Math. Z.**209**(1992), no. 1, 153–166. MR**1143220**, DOI 10.1007/BF02570827 - Alfred Czogała,
*On reciprocity equivalence of quadratic number fields*, Acta Arith.**58**(1991), no. 1, 27–46. MR**1111088**, DOI 10.4064/aa-58-1-27-46 - Alfred Czogała,
*Witt equivalence of quadratic extensions of global fields*, Math. Slovaca**41**(1991), no. 3, 251–256. MR**1126661** - Richard Elman, T. Y. Lam, and Adrian R. Wadsworth,
*Quadratic forms under multiquadratic extensions*, Nederl. Akad. Wetensch. Indag. Math.**42**(1980), no. 2, 131–145. MR**577569**, DOI 10.1016/1385-7258(80)90017-7 - Stanislav Jakubec and František Marko,
*Witt equivalence classes of quartic number fields*, Math. Comp.**58**(1992), no. 197, 355–368. MR**1094952**, DOI 10.1090/S0025-5718-1992-1094952-0 - T. Y. Lam,
*The algebraic theory of quadratic forms*, Mathematics Lecture Note Series, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1980. Revised second printing. MR**634798** - O. T. O’Meara,
*Introduction to quadratic forms*, Die Grundlehren der mathematischen Wissenschaften, Band 117, Springer-Verlag, New York-Heidelberg, 1971. Second printing, corrected. MR**0347768** - William B. Jacob, Tsit Yuen Lam, and Robert O. Robson (eds.),
*Recent advances in real algebraic geometry and quadratic forms*, Contemporary Mathematics, vol. 155, American Mathematical Society, Providence, RI, 1994. MR**1260697**, DOI 10.1090/conm/155 - Kazimierz Szymiczek,
*Matching Witts locally and globally*, Math. Slovaca**41**(1991), no. 3, 315–330. MR**1126669** - Kazimierz Szymiczek,
*Witt equivalence of global fields*, Comm. Algebra**19**(1991), no. 4, 1125–1149. MR**1102331**, DOI 10.1080/00927879108824194

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**343**(1994), 277-303 - MSC: Primary 11E12; Secondary 11E08, 11E81
- DOI: https://doi.org/10.1090/S0002-9947-1994-1176087-X
- MathSciNet review: 1176087