Amenability and the structure of the algebras $A_ p(G)$
HTML articles powered by AMS MathViewer
- by Brian Forrest
- Trans. Amer. Math. Soc. 343 (1994), 233-243
- DOI: https://doi.org/10.1090/S0002-9947-1994-1181182-5
- PDF | Request permission
Abstract:
A number of characterizations are given of the class of amenable locally compact groups in terms of the ideal structure of the algebras ${A_p}(G)$. An almost connected group is amenable if and only if for some $1 < p < \infty$ and some closed ideal I of ${A_p}(G)$, I has a bounded approximate identity. Furthermore, G is amenable if and only if every derivation of ${A_p}(G)$ into a Banach ${A_p}(G)$-bimodule is continuous.References
- W. G. Bade and P. C. Curtis Jr., Prime ideals and automatic continuity problems for Banach algebras, J. Functional Analysis 29 (1978), no. 1, 88–103. MR 499936, DOI 10.1016/0022-1236(78)90048-4 C. P. Chen and P. J. Cohen, Ideals of finite codimension in commutative Banach algebras, preprint.
- Michael Cowling, An application of Littlewood-Paley theory in harmonic analysis, Math. Ann. 241 (1979), no. 1, 83–96. MR 531153, DOI 10.1007/BF01406711
- Michael Cowling and Paul Rodway, Restrictions of certain function spaces to closed subgroups of locally compact groups, Pacific J. Math. 80 (1979), no. 1, 91–104. MR 534697, DOI 10.2140/pjm.1979.80.91
- P. C. Curtis Jr. and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), no. 1, 89–104. MR 1028916, DOI 10.1112/jlms/s2-40.1.89
- Antoine Derighetti, Convoluteurs et projecteurs, Harmonic analysis (Luxembourg, 1987) Lecture Notes in Math., vol. 1359, Springer, Berlin, 1988, pp. 142–158 (French). MR 974311, DOI 10.1007/BFb0086595
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- Hans G. Feichtinger, Colin C. Graham, and Eric H. Lakien, Nonfactorization in commutative, weakly selfadjoint Banach algebras, Pacific J. Math. 80 (1979), no. 1, 117–125. MR 534699, DOI 10.2140/pjm.1979.80.117
- Brian Forrest, Amenability and derivations of the Fourier algebra, Proc. Amer. Math. Soc. 104 (1988), no. 2, 437–442. MR 931730, DOI 10.1090/S0002-9939-1988-0931730-5
- Brian Forrest, Amenability and bounded approximate identities in ideals of $A(G)$, Illinois J. Math. 34 (1990), no. 1, 1–25. MR 1031879
- Brian Forrest, Amenability and ideals in $A(G)$, J. Austral. Math. Soc. Ser. A 53 (1992), no. 2, 143–155. MR 1175708, DOI 10.1017/S1446788700035758
- John E. Gilbert, On projections of $L^{\infty }(G)$ onto translation-invariant subspaces, Proc. London Math. Soc. (3) 19 (1969), 69–88. MR 244705, DOI 10.1112/plms/s3-19.1.69
- Andrew M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171–172. MR 213878, DOI 10.1007/BF02788714
- Carl Herz, Le rapport entre l’algèbre $A_{p}$ d’un groupe et d’un sousgroupe, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A244–A246 (French). MR 273428
- Carl Herz, The theory of $p$-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69–82. MR 272952, DOI 10.1090/S0002-9947-1971-0272952-0
- Carl Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123 (English, with French summary). MR 355482, DOI 10.5802/aif.473
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- B. Host, Le théorème des idempotents dans $B(G)$, Bull. Soc. Math. France 114 (1986), no. 2, 215–223 (French, with English summary). MR 860817, DOI 10.24033/bsmf.2055
- Barry Edward Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, R.I., 1972. MR 0374934
- J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339–343. MR 226408, DOI 10.4064/sm-29-3-339-343
- Anthony To Ming Lau and Viktor Losert, Weak$^\ast$-closed complemented invariant subspaces of $L_\infty (G)$ and amenable locally compact groups, Pacific J. Math. 123 (1986), no. 1, 149–159. MR 834144, DOI 10.2140/pjm.1986.123.149
- T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), no. 4, 683–741. MR 513952, DOI 10.1216/RMJ-1978-8-4-683 A. L. T. Paterson, Amenability, Amer. Math. Soc., Providence, RI, 1988.
- Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 767264
- N. V. Rao, Closed ideals of finite codimension in regular selfadjoint Banach algebras, J. Funct. Anal. 82 (1989), no. 2, 237–258. MR 987293, DOI 10.1016/0022-1236(89)90070-0
- C. Robert Warner and Robert Whitley, Ideals of finite codimension in $C[0,\,1]$ and $L^{1}(\textbf {R})$, Proc. Amer. Math. Soc. 76 (1979), no. 2, 263–267. MR 537085, DOI 10.1090/S0002-9939-1979-0537085-7
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 233-243
- MSC: Primary 43A07; Secondary 43A15, 46J99
- DOI: https://doi.org/10.1090/S0002-9947-1994-1181182-5
- MathSciNet review: 1181182