## Microlocal analysis of some isospectral deformations

HTML articles powered by AMS MathViewer

- by F. Marhuenda PDF
- Trans. Amer. Math. Soc.
**343**(1994), 245-275 Request permission

## Abstract:

We study the microlocal structure of the examples of isospectral deformations of Riemannian manifolds given by D. DeTurck and C. Gordon in [DeT-Gl]. The Schwartz kernel of the intertwining operators considered by them may be written as an oscillatory integral with a singular phase function and product type amplitude. In certain instances, we identify them as belonging to the space of Fourier integral operators associated with various pairwise intersecting Lagrangians. After formulating a class of operators incorporating the most relevant features of the operators above, we establish a composition calculus for this class and show that is not necessary to introduce new Lagrangians in the composition.## References

- JosĂ© L. Antoniano and Gunther A. Uhlmann,
*A functional calculus for a class of pseudodifferential operators with singular symbols*, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp.Â 5â€“16. MR**812280**, DOI 10.1090/pspum/043/812280
M. Berger, P. Godouchon and E. Mazet,, - Raoul Bott,
*On the iteration of closed geodesics and the Sturm intersection theory*, Comm. Pure Appl. Math.**9**(1956), 171â€“206. MR**90730**, DOI 10.1002/cpa.3160090204 - Dennis M. DeTurck and Carolyn S. Gordon,
*Isospectral deformations. I. Riemannian structures on two-step nilspaces*, Comm. Pure Appl. Math.**40**(1987), no.Â 3, 367â€“387. MR**882070**, DOI 10.1002/cpa.3160400306 - Dennis M. DeTurck and Carolyn S. Gordon,
*Isospectral deformations. II. Trace formulas, metrics, and potentials*, Comm. Pure Appl. Math.**42**(1989), no.Â 8, 1067â€“1095. With an appendix by Kyung Bai Lee. MR**1029118**, DOI 10.1002/cpa.3160420803 - J. J. Duistermaat,
*Fourier integral operators*, Courant Institute of Mathematical Sciences, New York University, New York, 1973. Translated from Dutch notes of a course given at Nijmegen University, February 1970 to December 1971. MR**0451313** - J. J. Duistermaat and V. W. Guillemin,
*The spectrum of positive elliptic operators and periodic bicharacteristics*, Invent. Math.**29**(1975), no.Â 1, 39â€“79. MR**405514**, DOI 10.1007/BF01405172 - Carolyn S. Gordon and Edward N. Wilson,
*Isospectral deformations of compact solvmanifolds*, J. Differential Geom.**19**(1984), no.Â 1, 241â€“256. MR**739790** - Allan Greenleaf and Gunther Uhlmann,
*Nonlocal inversion formulas for the X-ray transform*, Duke Math. J.**58**(1989), no.Â 1, 205â€“240. MR**1016420**, DOI 10.1215/S0012-7094-89-05811-0 - Allan Greenleaf and Gunther Uhlmann,
*Estimates for singular Radon transforms and pseudodifferential operators with singular symbols*, J. Funct. Anal.**89**(1990), no.Â 1, 202â€“232. MR**1040963**, DOI 10.1016/0022-1236(90)90011-9 - A. Greenleaf and G. Uhlmann,
*Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms*, Ann. Inst. Fourier (Grenoble)**40**(1990), no.Â 2, 443â€“466 (English, with French summary). MR**1070835**
â€”, private communication.
- Victor Guillemin,
*Cosmology in $(2 + 1)$-dimensions, cyclic models, and deformations of $M_{2,1}$*, Annals of Mathematics Studies, vol. 121, Princeton University Press, Princeton, NJ, 1989. MR**999388**, DOI 10.1515/9781400882410 - V. Guillemin and G. Uhlmann,
*Oscillatory integrals with singular symbols*, Duke Math. J.**48**(1981), no.Â 1, 251â€“267. MR**610185** - Lars HĂ¶rmander,
*The analysis of linear partial differential operators. III*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR**781536** - Lars HĂ¶rmander,
*The analysis of linear partial differential operators. III*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR**781536** - Lars HĂ¶rmander,
*Fourier integral operators. I*, Acta Math.**127**(1971), no.Â 1-2, 79â€“183. MR**388463**, DOI 10.1007/BF02392052
F. Marhuenda, - Richard B. Melrose,
*Transformation of boundary problems*, Acta Math.**147**(1981), no.Â 3-4, 149â€“236. MR**639039**, DOI 10.1007/BF02392873
â€”, - R. B. Melrose and G. A. Uhlmann,
*Lagrangian intersection and the Cauchy problem*, Comm. Pure Appl. Math.**32**(1979), no.Â 4, 483â€“519. MR**528633**, DOI 10.1002/cpa.3160320403 - Gerardo Mendoza,
*Symbol calculus associated with intersecting Lagrangians*, Comm. Partial Differential Equations**7**(1982), no.Â 9, 1035â€“1116. MR**673826**, DOI 10.1080/03605308208820245 - FranĂ§ois TrĂ¨ves,
*Introduction to pseudodifferential and Fourier integral operators. Vol. 2*, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR**597145** - Alan Weinstein,
*On Maslovâ€™s quantization condition*, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) Lecture Notes in Math., Vol. 459, Springer, Berlin, 1975, pp.Â 341â€“372. MR**0436231**
S. Zelditch,

*Le spectre dâ€™une variĂ©tĂ© Riemannienne*, Lecture Notes in Math., vol. 194, Springer-Verlag, Berlin and New York, 1971.

*Microlocal analysis of some isospectral problems*, Ph.D. thesis, Univ. Rochester, New York, 1990.

*Marked Lagrangians*, Notes of lectures at Max Planck Institut, 1987, paper in preparation.

*Isospectrality in the category of Fourier integral operators*. I, preprint.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**343**(1994), 245-275 - MSC: Primary 58G15; Secondary 35S30, 58G25
- DOI: https://doi.org/10.1090/S0002-9947-1994-1181185-0
- MathSciNet review: 1181185