Calculating discriminants by higher direct images
HTML articles powered by AMS MathViewer
- by Jerzy Weyman
- Trans. Amer. Math. Soc. 343 (1994), 367-389
- DOI: https://doi.org/10.1090/S0002-9947-1994-1184118-6
- PDF | Request permission
Abstract:
The author uses the homological algebra to construct for any line bundle $\mathcal {L}$ on a nonsingular projective variety X the complex $\mathbb {F}(\mathcal {L})$ whose determinant is equal to the equation of the dual variety ${X^{\text {V}}}$. This generalizes the Cayley-Koszul complexes defined by Gelfand, Kapranov and Zelevinski. The formulas for the codimension and degree of ${X^{\text {V}}}$ in terms of complexes $\mathbb {F}(\mathcal {L})$ are given. In the second part of the article the general technique is applied to classical discriminants and hyperdeterminants.References
- David A. Buchsbaum and David Eisenbud, Some structure theorems for finite free resolutions, Advances in Math. 12 (1974), 84–139. MR 340240, DOI 10.1016/S0001-8708(74)80019-8
- J. A. Eagon and D. G. Northcott, On the Buchsbaum-Eisenbud theory of finite free resolutions, J. Reine Angew. Math. 262(263) (1973), 205–219. MR 332759, DOI 10.1515/crll.1973.262-263.205
- I. M. Gel′fand, A. V. Zelevinskiĭ, and M. M. Kapranov, Projective-dual varieties and hyperdeterminants, Dokl. Akad. Nauk SSSR 305 (1989), no. 6, 1294–1298 (Russian); English transl., Soviet Math. Dokl. 39 (1989), no. 2, 385–389. MR 1008103
- I. M. Gel′fand, A. V. Zelevinskiĭ, and M. M. Kapranov, $A$-discriminants and Cayley-Koszul complexes, Dokl. Akad. Nauk SSSR 307 (1989), no. 6, 1307–1311 (Russian); English transl., Soviet Math. Dokl. 40 (1990), no. 1, 239–243. MR 1020868 —, General discriminants, List of results. Preprint, 1989.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Audun Holme, The geometric and numerical properties of duality in projective algebraic geometry, Manuscripta Math. 61 (1988), no. 2, 145–162. MR 943533, DOI 10.1007/BF01259325
- Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II); Dirigé par P. Deligne et N. Katz. MR 0354657
- Steven L. Kleiman, The enumerative theory of singularities, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 297–396. MR 0568897
- Friedrich Knop and Gisela Menzel, Duale Varietäten von Fahnenvarietäten, Comment. Math. Helv. 62 (1987), no. 1, 38–61 (German). MR 882964, DOI 10.1007/BF02564437
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518 G. Salmon, Lessons introductory to the modern higher algebra, Hodges and Figgis, Dublin, 1885, (reprinted by Chelsea, New York, 1964).
- J. Weyman, The equations of conjugacy classes of nilpotent matrices, Invent. Math. 98 (1989), no. 2, 229–245. MR 1016262, DOI 10.1007/BF01388851
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 367-389
- MSC: Primary 14M12; Secondary 14F10
- DOI: https://doi.org/10.1090/S0002-9947-1994-1184118-6
- MathSciNet review: 1184118