Solutions to the quantum Yang-Baxter equation arising from pointed bialgebras
HTML articles powered by AMS MathViewer
- by David E. Radford
- Trans. Amer. Math. Soc. 343 (1994), 455-477
- DOI: https://doi.org/10.1090/S0002-9947-1994-1201324-2
- PDF | Request permission
Abstract:
Let $R:M \otimes M \to M \otimes M$ be a solution to the quantum Yang-Baxter equation, where M is a finite-dimensional vector space over a field k. We introduce a quotient ${A^{{\text {red}}}}(R)$ of the bialgebra $A(R)$ constructed by Fadeev, Reshetihkin and Takhtajan, whose characteristics seem to more faithfully reflect properties R possesses as a linear operator. We characterize all R such that ${A^{{\text {red}}}}(R)$ is a pointed bialgebra, and we determine all solutions R to the quantum Yang-Baxter equation when ${A^{{\text {red}}}}(R)$ is pointed and $\dim M = 2$ (with a few technical exceptions when k has characteristic 2). Extensions of such solutions to the quantum plane are studied.References
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), no. 1, 178–206 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 193–225. MR 1015339
- Robert G. Heyneman and David E. Radford, Reflexivity and coalgebras of finite type, J. Algebra 28 (1974), 215–246. MR 346001, DOI 10.1016/0021-8693(74)90035-0
- Jarmo Hietarinta, All solutions to the constant quantum Yang-Baxter equation in two dimensions, Phys. Lett. A 165 (1992), no. 3, 245–251. MR 1169634, DOI 10.1016/0375-9601(92)90044-M —, Solving the two-dimensional constant quantum Yang-Baxter equation, preprint, 1992.
- Larry A. Lambe and David E. Radford, Algebraic aspects of the quantum Yang-Baxter equation, J. Algebra 154 (1993), no. 1, 228–288. MR 1201922, DOI 10.1006/jabr.1993.1014
- Richard Gustavus Larson, Characters of Hopf algebras, J. Algebra 17 (1971), 352–368. MR 283054, DOI 10.1016/0021-8693(71)90018-4
- Shahn Majid, Doubles of quasitriangular Hopf algebras, Comm. Algebra 19 (1991), no. 11, 3061–3073. MR 1132774, DOI 10.1080/00927879108824306 —, Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Algebra 129 (1990), 1-91.
- Shahn Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Internat. J. Modern Phys. A 5 (1990), no. 1, 1–91. MR 1027945, DOI 10.1142/S0217751X90000027
- David E. Radford, Minimal quasitriangular Hopf algebras, J. Algebra 157 (1993), no. 2, 285–315. MR 1220770, DOI 10.1006/jabr.1993.1102
- David E. Radford, Solutions to the quantum Yang-Baxter equation and the Drinfel′d double, J. Algebra 161 (1993), no. 1, 20–32. MR 1245841, DOI 10.1006/jabr.1993.1203 M. E. Sweedler, Hopf algebras, Math. Lecture Notes Ser., Benjamin, New York, 1969. P. Smith, Quantum groups for ring theorists, preprint.
- David N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 261–290. MR 1074714, DOI 10.1017/S0305004100069139
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 455-477
- MSC: Primary 17B37; Secondary 16W30
- DOI: https://doi.org/10.1090/S0002-9947-1994-1201324-2
- MathSciNet review: 1201324