Le théorème de Fermat-Goss
HTML articles powered by AMS MathViewer
- by Laurent Denis
- Trans. Amer. Math. Soc. 343 (1994), 713-726
- DOI: https://doi.org/10.1090/S0002-9947-1994-1195509-1
- PDF | Request permission
Abstract:
The analogue of the Fermat equation and of the Fermat conjecture is studied by Goss [G], on the rational function fields in characteristic $p > 0$. We prove here that this equation has no nontrivial solutions. When $q = 2$, the method uses the canonical height on the t-module constructed in [D]. This method also gives finiteness theorems for some generalization of the Fermat equation in higher dimension.References
- Greg W. Anderson, $t$-motives, Duke Math. J. 53 (1986), no. 2, 457–502. MR 850546, DOI 10.1215/S0012-7094-86-05328-7
- Greg W. Anderson and Dinesh S. Thakur, Tensor powers of the Carlitz module and zeta values, Ann. of Math. (2) 132 (1990), no. 1, 159–191. MR 1059938, DOI 10.2307/1971503
- Laurent Denis, Hauteurs canoniques et modules de Drinfel′d, Math. Ann. 294 (1992), no. 2, 213–223 (French). MR 1183402, DOI 10.1007/BF01934322
- V. G. Drinfel′d, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656 (Russian). MR 0384707
- D. Goss, On a Fermat equation arising in the arithmetic theory of function fields, Math. Ann. 261 (1982), no. 3, 269–289. MR 679788, DOI 10.1007/BF01455448
- D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77–91. MR 330106, DOI 10.1090/S0002-9947-1974-0330106-6
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- R. C. Mason, Diophantine equations over function fields, London Mathematical Society Lecture Note Series, vol. 96, Cambridge University Press, Cambridge, 1984. MR 754559, DOI 10.1017/CBO9780511752490
- P. Samuel, Lectures on old and new results on algebraic curves, Tata Institute of Fundamental Research Lectures on Mathematics, No. 36, Tata Institute of Fundamental Research, Bombay, 1966. Notes by S. Anantharaman. MR 0222088
- J. F. Voloch, A Diophantine problem on algebraic curves over function fields of positive characteristic, Bull. Soc. Math. France 119 (1991), no. 1, 121–126 (English, with French summary). MR 1101942, DOI 10.24033/bsmf.2160
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 713-726
- MSC: Primary 11R58; Secondary 11D41
- DOI: https://doi.org/10.1090/S0002-9947-1994-1195509-1
- MathSciNet review: 1195509