Flows in fibers
HTML articles powered by AMS MathViewer
- by Jun-ichi Tanaka
- Trans. Amer. Math. Soc. 343 (1994), 779-804
- DOI: https://doi.org/10.1090/S0002-9947-1994-1202421-8
- PDF | Request permission
Abstract:
Let ${H^\infty }(\Delta )$ be the algebra of all bounded analytic functions on the open unit disc $\Delta$, and let $\mathfrak {M}({H^\infty }(\Delta ))$ be the maximal ideal space of ${H^\infty }(\Delta )$. Using a flow, we represent a reasonable portion of a fiber in $\mathfrak {M}({H^\infty }(\Delta ))$. This indicates a relation between the corona theorem and the individual ergodic theorem. As an application, we answer a question of Forelli [3] by showing that there exists a minimal flow on which the induced uniform algebra is not a Dirichlet algebra. The proof rests on the fact that the closure of a nonhomeomorphic part in $\mathfrak {M}({H^\infty }(\Delta ))$ may contain a homeomorphic copy of $\mathfrak {M}({H^\infty }(\Delta ))$. Taking suitable factors, we may construct a lot of minimal flows which are not strictly ergodic.References
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Frank Forelli, Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33–59. MR 209771, DOI 10.1007/BF02392475
- Frank Forelli, Fourier theory and flows, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 475–476. MR 0428041
- Frank Forelli, A maximal algebra, Math. Scand. 30 (1972), 152–158. MR 324421, DOI 10.7146/math.scand.a-11071
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- H. Helson, Analyticity on compact abelian groups, Algebras in analysis (Proc. Instructional Conf. and NATO Advanced Study Inst., Birmingham, 1973) Academic Press, London, 1975, pp. 1–62. MR 0427959
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- Kenneth Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74–111. MR 215102, DOI 10.2307/1970361
- Donald E. Marshall, Blaschke products generate $H^{\infty }$, Bull. Amer. Math. Soc. 82 (1976), no. 3, 494–496. MR 402054, DOI 10.1090/S0002-9904-1976-14071-2
- Paul S. Muhly, Function algebras and flows, Acta Sci. Math. (Szeged) 35 (1973), 111–121. MR 331068
- Paul S. Muhly, Function algebras and flows, Acta Sci. Math. (Szeged) 35 (1973), 111–121. MR 331068
- Paul S. Muhly, Function algebras and flows. III, Math. Z. 136 (1974), 253–260. MR 493357, DOI 10.1007/BF01214129
- Paul S. Muhly, Isometries of ergodic Hardy spaces, Israel J. Math. 36 (1980), no. 1, 50–74. MR 589657, DOI 10.1007/BF02761230
- Jun-ichi Tanaka, Corona problem and flows, J. Funct. Anal. 102 (1991), no. 2, 360–378. MR 1140631, DOI 10.1016/0022-1236(91)90126-P
- Jing Bo Xia, Conditional expectations and the corona problem of ergodic Hardy spaces, J. Funct. Anal. 64 (1985), no. 2, 251–274. MR 812394, DOI 10.1016/0022-1236(85)90077-1
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 779-804
- MSC: Primary 46J15; Secondary 30H05, 54H20
- DOI: https://doi.org/10.1090/S0002-9947-1994-1202421-8
- MathSciNet review: 1202421