Une dichotomie de Hopf pour les flots géodésiques associés aux groupes discrets d’isométries des arbres
HTML articles powered by AMS MathViewer
- by M. Coornaert and A. Papadopoulos
- Trans. Amer. Math. Soc. 343 (1994), 883-898
- DOI: https://doi.org/10.1090/S0002-9947-1994-1207579-2
- PDF | Request permission
Abstract:
Let X be a complete locally compact metric tree and $\Gamma$ a group of isometries of X acting properly on this space. The space of bi-infinite geodesics in X constitutes a space GX on which $\Gamma$ acts properly. Let $\Omega$ be the quotient of GX by this action. The geodesic flow associated to $\Gamma$ is the flow on $\Omega$ which is the quotient of the geodesic flow on GX, defined by the time-shift on geodesics. To any $\Gamma$-conformal measure on the boundary $\partial X$ there is an associated measure m on $\Omega$ which is invariant by the geodesic flow. We prove the following results: The geodesic flow on $(\Omega ,m)$ is either conservative or dissipative. If it is conservative, then it is ergodic, If it is dissipative, then it is not ergodic unless it is measurably conjugate to the action of $\mathbb {R}$ on itself by conjugation. We prove also a dichotomy in terms of the conical limit set ${\Lambda _c} \subset \partial X$ of $\Gamma$: the flow on $(\Omega ,m)$ is conservative if and only if $\mu ({\Lambda _c}) = \mu (\partial X)$, and it is dissipative if and only if $\mu ({\Lambda _c}) = 0$. The results are analogous to results of E. Hopf and D. Sullivan in the case of Riemannian manifolds of constant negative curvature.References
- Michel Coornaert, Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993), no. 2, 241–270 (French, with French summary). MR 1214072, DOI 10.2140/pjm.1993.159.241
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3} E. Hopf, Ergodentheorie, Ergeb. Math., Band 5, no. 2, Springer-Verlag, 1937.
- Eberhard Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl. 91 (1939), 261–304 (German). MR 1464
- Eberhard Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc. 77 (1971), 863–877. MR 284564, DOI 10.1090/S0002-9904-1971-12799-4
- Vadim A. Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math. 455 (1994), 57–103. MR 1293874, DOI 10.1515/crll.1994.455.57
- Ulrich Krengel, Darstellungssätze für Strömungen und Halbströmungen. I, Math. Ann. 176 (1968), 181–190 (German). MR 224773, DOI 10.1007/BF02052824
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- Peter J. Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989. MR 1041575, DOI 10.1017/CBO9780511600678
- Frank Spitzer, Principles of random walk, 2nd ed., Graduate Texts in Mathematics, Vol. 34, Springer-Verlag, New York-Heidelberg, 1976. MR 0388547, DOI 10.1007/978-1-4684-6257-9
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586, DOI 10.1007/BF02684773
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 883-898
- MSC: Primary 58F17; Secondary 57M60, 58F03, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1994-1207579-2
- MathSciNet review: 1207579