Radially symmetric solutions to a Dirichlet problem involving critical exponents
HTML articles powered by AMS MathViewer
- by Alfonso Castro and Alexandra Kurepa
- Trans. Amer. Math. Soc. 343 (1994), 907-926
- DOI: https://doi.org/10.1090/S0002-9947-1994-1207581-0
- PDF | Request permission
Abstract:
In this paper we answer, for $N = 3,4$, the question raised in [1] on the number of radially symmetric solutions to the boundary value problem $- \Delta u(x) = \lambda u(x) + u(x)|u(x){|^{4/(N - 2)}}$, $x \in B: = \{ x \in {R^N}:\left \| x \right \| < 1\}$, $u(x) = 0$, $x \in \partial B$, where $\Delta$ is the Laplacean operator and $\lambda > 0$. Indeed, we prove that if $N = 3,4$, then for any $\lambda > 0$ this problem has only finitely many radial solutions. For $N = 3,4,5$ we show that, for each $\lambda > 0$, the set of radially symmetric solutions is bounded. Moreover, we establish geometric properties of the branches of solutions bifurcating from zero and from infinity.References
- Frederick V. Atkinson, Haïm Brezis, and Lambertus A. Peletier, Solutions d’équations elliptiques avec exposant de Sobolev critique qui changent de signe, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 16, 711–714 (French, with English summary). MR 944417
- Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477. MR 709644, DOI 10.1002/cpa.3160360405
- Alfonso Castro and Alexandra Kurepa, Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball, Proc. Amer. Math. Soc. 101 (1987), no. 1, 57–64. MR 897070, DOI 10.1090/S0002-9939-1987-0897070-7
- Alfonso Castro and Alexandra Kurepa, Radially symmetric solutions to a superlinear Dirichlet problem in a ball with jumping nonlinearities, Trans. Amer. Math. Soc. 315 (1989), no. 1, 353–372. MR 933323, DOI 10.1090/S0002-9947-1989-0933323-8 G. Cerami, Elliptic equations with critical growth, College on Variational Problems in Analysis, Lecture Notes SMR 281/24, Internat. Centre for Theoretical Physics, Trieste, Italy, 1988.
- G. Cerami, S. Solimini, and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), no. 3, 289–306. MR 867663, DOI 10.1016/0022-1236(86)90094-7
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI 10.1016/0022-1236(71)90015-2
- Man Kam Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\textbf {R}^n$, Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. MR 969899, DOI 10.1007/BF00251502 S. I. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl. 6 (1965), 1408-1411.
- Patrizia Pucci and James Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), no. 3, 681–703. MR 855181, DOI 10.1512/iumj.1986.35.35036
- Marvin Shinbrot and Robert R. Welland, The Cauchy-Kowalewskaya theorem, J. Math. Anal. Appl. 55 (1976), no. 3, 757–772. MR 492756, DOI 10.1016/0022-247X(76)90079-2
- Sergio Solimini, On the existence of infinitely many radial solutions for some elliptic problems, Rev. Mat. Apl. 9 (1987), no. 1, 75–86. MR 926233
- Neil S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 265–274. MR 240748
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 907-926
- MSC: Primary 35B05; Secondary 35J65
- DOI: https://doi.org/10.1090/S0002-9947-1994-1207581-0
- MathSciNet review: 1207581