On the force between rotating co-axial black holes
HTML articles powered by AMS MathViewer
- by Gilbert Weinstein
- Trans. Amer. Math. Soc. 343 (1994), 899-906
- DOI: https://doi.org/10.1090/S0002-9947-1994-1214787-3
- PDF | Request permission
Abstract:
We study the force between rotating coaxial black holes, as it was defined in [9 and 10]. We show that under a certain limit, the force is attractive, and in fact tends to infinity. This lends support to the conjecture that the force is always positive.References
- R. Bach and H. Weyl, Neue Lösungen der Einsteinschen Gravitationsgleichungen, Math. Z. 13 (1921), 132-145.
- Brandon Carter, Black hole equilibrium states, Black holes/Les astres occlus (École d’Été Phys. Théor., Les Houches, 1972) Gordon and Breach, New York, 1973, pp. 57–214. MR 0465047
- B. Carter, Bunting identity and Mazur identity for nonlinear elliptic systems including the black hole equilibrium problem, Comm. Math. Phys. 99 (1985), no. 4, 563–591. MR 796013, DOI 10.1007/BF01215910
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. MR 0424186, DOI 10.1017/CBO9780511524646
- Yan Yan Li and Gang Tian, Regularity of harmonic maps with prescribed singularities, Comm. Math. Phys. 149 (1992), no. 1, 1–30. MR 1182409, DOI 10.1007/BF02096622
- Yan Yan Li and Gang Tian, Nonexistence of axially symmetric, stationary solution of Einstein vacuum equation with disconnected symmetric event horizon, Manuscripta Math. 73 (1991), no. 1, 83–89. MR 1124312, DOI 10.1007/BF02567630
- R. Penrose, Some unsolved problems in classical general relativity, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 631–668. MR 645761 D. C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975), 905-906.
- Gilbert Weinstein, On rotating black holes in equilibrium in general relativity, Comm. Pure Appl. Math. 43 (1990), no. 7, 903–948. MR 1072397, DOI 10.1002/cpa.3160430705
- Gilbert Weinstein, The stationary axisymmetric two-body problem in general relativity, Comm. Pure Appl. Math. 45 (1992), no. 9, 1183–1203. MR 1177481, DOI 10.1002/cpa.3160450907
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 899-906
- MSC: Primary 83C57
- DOI: https://doi.org/10.1090/S0002-9947-1994-1214787-3
- MathSciNet review: 1214787