Weak solutions of hyperbolic-parabolic Volterra equations
HTML articles powered by AMS MathViewer
- by Gustaf Gripenberg
- Trans. Amer. Math. Soc. 343 (1994), 675-694
- DOI: https://doi.org/10.1090/S0002-9947-1994-1216335-0
- PDF | Request permission
Abstract:
The existence of a global weak solution, satisfying certain a priori ${L^\infty }$-bounds, of the equation ${u_t}(t,x) = \int _0^tk(t - s){(\sigma ({u_x}))_x}(s,x)ds + f(t,x)$ is established. The kernel k is locally integrable and log-convex, and $\sigma \prime$ has only one local minimum which is positive.References
- Deborah Brandon and William J. Hrusa, Global existence of smooth shearing motions of a nonlinear viscoelastic fluid, J. Integral Equations Appl. 2 (1990), no. 3, 333–351. MR 1094473, DOI 10.1216/jiea/1181075567
- C. M. Dafermos, Development of singularities in the motion of materials with fading memory, Arch. Rational Mech. Anal. 91 (1985), no. 3, 193–205. MR 806001, DOI 10.1007/BF00250741
- C. M. Dafermos and J. A. Nohel, Energy methods for nonlinear hyperbolic Volterra integrodifferential equations, Comm. Partial Differential Equations 4 (1979), no. 3, 219–278. MR 522712, DOI 10.1080/03605307908820094
- W. Desch and R. Grimmer, Smoothing properties of linear Volterra integro-differential equations, SIAM J. Math. Anal. 20 (1989), no. 1, 116–132. MR 977492, DOI 10.1137/0520009
- Hans Engler, Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials, Arch. Rational Mech. Anal. 113 (1990), no. 1, 1–38. MR 1079180, DOI 10.1007/BF00380814
- Yasuhiro Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math. 27 (1990), no. 2, 309–321. MR 1066629
- Yasuhiro Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. II, Osaka J. Math. 27 (1990), no. 4, 797–804. MR 1088183
- Gustaf Gripenberg, On Volterra equations of the first kind, Integral Equations Operator Theory 3 (1980), no. 4, 473–488. MR 595747, DOI 10.1007/BF01702311
- Gustaf Gripenberg, Nonexistence of smooth solutions for shearing flows in a nonlinear viscoelastic fluid, SIAM J. Math. Anal. 13 (1982), no. 6, 954–961. MR 674764, DOI 10.1137/0513066
- Gustaf Gripenberg, Volterra integro-differential equations with accretive nonlinearity, J. Differential Equations 60 (1985), no. 1, 57–79. MR 808257, DOI 10.1016/0022-0396(85)90120-2
- Gustaf Gripenberg, Global existence of solutions of Volterra integrodifferential equations of parabolic type, J. Differential Equations 102 (1993), no. 2, 382–390. MR 1216735, DOI 10.1006/jdeq.1993.1035
- Gustaf Gripenberg, Nonlinear Volterra equations of parabolic type due to singular kernels, J. Differential Equations 112 (1994), no. 1, 154–169. MR 1287555, DOI 10.1006/jdeq.1994.1098 —, Compensated compactness and one-dimensional elastodynamics, manuscript.
- G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge, 1990. MR 1050319, DOI 10.1017/CBO9780511662805
- Harumi Hattori, Breakdown of smooth solutions in dissipative nonlinear hyperbolic equations, Quart. Appl. Math. 40 (1982/83), no. 2, 113–127. MR 666668, DOI 10.1090/S0033-569X-1982-0666668-X
- William J. Hrusa, Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data, SIAM J. Math. Anal. 16 (1985), no. 1, 110–134. MR 772871, DOI 10.1137/0516007
- W. J. Hrusa and J. A. Nohel, The Cauchy problem in one-dimensional nonlinear viscoelasticity, J. Differential Equations 59 (1985), no. 3, 388–412. MR 807854, DOI 10.1016/0022-0396(85)90147-0 W. J. Hrusa, J. A. Nohel, and M. Renardy, Initial value problems in viscoelasticity, Appl. Mech. Rev. 41 (1988), 371-378.
- W. J. Hrusa and M. Renardy, On wave propagation in linear viscoelasticity, Quart. Appl. Math. 43 (1985), no. 2, 237–254. MR 793532, DOI 10.1090/S0033-569X-1985-0793532-0
- W. J. Hrusa and M. Renardy, On a class of quasilinear partial integro-differential equations with singular kernels, J. Differential Equations 64 (1986), no. 2, 195–220. MR 851911, DOI 10.1016/0022-0396(86)90087-2
- William J. Hrusa and Michael Renardy, A model equation for viscoelasticity with a strongly singular kernel, SIAM J. Math. Anal. 19 (1988), no. 2, 257–269. MR 930025, DOI 10.1137/0519019
- Stig-Olof Londen, An existence result on a Volterra equation in a Banach space, Trans. Amer. Math. Soc. 235 (1978), 285–304. MR 473770, DOI 10.1090/S0002-9947-1978-0473770-7
- Stig-Olof Londen, On an integrodifferential Volterra equation with a maximal monotone mapping, J. Differential Equations 27 (1978), no. 3, 405–420. MR 499976, DOI 10.1016/0022-0396(78)90060-8
- Stig-Olof Londen, Some existence results for a nonlinear hyperbolic integrodifferential equation with singular kernel, J. Integral Equations Appl. 3 (1991), no. 1, 3–30. MR 1094929, DOI 10.1216/jiea/1181075599
- R. C. MacCamy, A model for one-dimensional, nonlinear viscoelasticity, Quart. Appl. Math. 35 (1977/78), no. 1, 21–33. MR 478939, DOI 10.1090/S0033-569X-1977-0478939-6
- J. A. Nohel and M. J. Renardy, Development of singularities in nonlinear viscoelasticity, Amorphous polymers and non-Newtonian fluids (Minneapolis, Minn., 1985) IMA Vol. Math. Appl., vol. 6, Springer, New York, 1987, pp. 139–152. MR 902188, DOI 10.1007/978-1-4612-1064-1_{7}
- J. A. Nohel, R. C. Rogers, and A. E. Tzavaras, Weak solutions for a nonlinear system in viscoelasticity, Comm. Partial Differential Equations 13 (1988), no. 1, 97–127. MR 914816, DOI 10.1080/03605308808820540
- Jan Prüss, Positivity and regularity of hyperbolic Volterra equations in Banach spaces, Math. Ann. 279 (1987), no. 2, 317–344. MR 919509, DOI 10.1007/BF01461726
- Jan Prüss, Quasilinear parabolic Volterra equations in spaces of integrable functions, Semigroup theory and evolution equations (Delft, 1989) Lecture Notes in Pure and Appl. Math., vol. 135, Dekker, New York, 1991, pp. 401–420. MR 1164666
- Michael Renardy, Coercive estimates and existence of solutions for a model of one-dimensional viscoelasticity with a nonintegrable memory function, J. Integral Equations Appl. 1 (1988), no. 1, 7–16. MR 955160, DOI 10.1216/JIE-1988-1-1-7
- Michael Renardy, William J. Hrusa, and John A. Nohel, Mathematical problems in viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. MR 919738
- Olof J. Staffans, On a nonlinear hyperbolic Volterra equation, SIAM J. Math. Anal. 11 (1980), no. 5, 793–812. MR 586908, DOI 10.1137/0511071
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 675-694
- MSC: Primary 45K05; Secondary 35D05, 35K60, 45D05, 73F15
- DOI: https://doi.org/10.1090/S0002-9947-1994-1216335-0
- MathSciNet review: 1216335